Tải bản đầy đủ

Tài liệu Chuyên đề ôn thi đại học môn Toán số 2: Đường và phương trình đường ppt


CHUYÊN ĐỀ 2
ĐƯỜNG VÀ PHƯƠNG TRÌNH ĐƯỜNG
Các bài toán về phần đường và phương trình đường thường yêu cầu xác đònh quỹ tích
các điểm trong mặt phẳng tọa độ theo những điều kiện cho trước, quỹ tích này là một đường
mà ta phải tìm phương trình của nó dựa vào đònh nghóa:
F(x, y) = 0 là phương trình của đường (L) nếu ta có :
M(, )

(L) F( , ) = 0
M
x
M
y ⇔
M
x
M
y
Nếu M

(L) và M có tọa độ phụ thuộc tham số t:


( )
()
xft
ygt
=⎧


=


(t

R)
thì đó là phương trình tham số của đường (L).
Từ phương trình tham số, ta khử t thì có thể trở về dạng
F(x, y) = 0
Lưu ý việc giới hạn của quỹ tích tuỳ theo các điều kiện đã cho trong đầu bài.
Ví du1:
Trong mặt phẳng Oxy cho A(2, 1), B(–3, 2). Tìm quỹ tích điểm M để
(
MA
+
JJJJG
MB
JJJJG
)
AB
JJJG
= 1
Giải
Gọi (L) là quỹ tích phải tìm.
M(, )

(L)
M
x
M
y ⇔ (
MA


JJJJG
+
MB
JJJJG
)
AB
JJJG
= 1
[ (2 – ) + (–3 – ) ] (–3 – 2) + (1 – + 2 – ) (2 – 1) = 1 ⇔
M
x
M
x
M
y
M
y
5 + 10 + 3 – 2 = 1 ⇔
M
x
M
y
10 – 2 + 7 = 0 ⇔
M
x
M
y
M( , ) có tọa độ thỏa phương trình ⇔
M
x
M
y
F(x, y) = 10x – 2y + 7 = 0
Vậy quỹ tích phải tìm là đường thẳng (L) có phương trình
10x – 2y + 7 = 0.

1
Ví dụ 2:
Lập phương trình quỹ tích tâm của những đường tròn tiếp xúc với trục Ox và đi qua
điểm A(1, 2).
Giải
Gọi (L) là quỹ tích những tâm đường tròn tiếp xúc với trục Ox và đi qua điểm A(1, 2).
I( , )

(L) I là tâm đường tròn qua A(1, 2) và tiếp xúc với Ox tại M
I
x
I
y ⇔

IM Ox tại M
IM = IA





()()()()
22 2
00
MI M
MI MI AI AI
x x và y
xx yy xx yy
−= =



−+− = −+−


2

– 2 – 4 + 5 = 0 ⇔
2
I
x
I
x
I
y
I( , ) có tọa độ thỏa phương trình ⇔
I
x
I
y
F(x, y) = x
2
– 2x – 4y + 5 = 0
Đó là phương trình của quỹ tích phải tìm (Parabol).
* * *

2

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay

×