Tải bản đầy đủ

Bài giảng Vat Ly hay va kho ( Luyen Thi HSG ).doc

Vt lớ Hay v Khú
A. C hc
1. ng hc
Bài 1: Cho cơ hệ nh hình vẽ. B chuyển động sang phải với gia tốc
a

, còn vật nhỏ A đợc nối
với điểm C bằng một sợi dây không dãn đợc nâng lên theo đờng dốc chính của một mặt trụ của vật
B. Mặt này có bán kính R.
Giả sử tại thời điểm ban đầu vật A nằm trên sàn và đang đứng yên,
sợi dây luôn căng.
Hãy tính vận tốc trung bình của vật A trong quá trình A đi từ sàn
lên đến điểm cao nhất của trụ B (điểm D).

Giải:
Khi A đi từ sàn lên đến điểm cao nhất của trụ thì độ dời của nó sẽ là
AI

:



cos..2
22
DIADDIADIAIA
+==
(
4


=
)


( )
2
2
.2.
2
.22
2
2
2
RRRRIAIA

+






==

84
2
2
+=

R
IA
Ta có thời gian để trụ dịch chuyển từ E đến F là:



2
2
1
atEF
=
Thời gian để trụ đi từ E đến F cũng chính là thời gian chuyển dời của vật nhỏ khi đi từ I đến A :
Suy ra:

a
R
a
R
a
AD
a
EF
t


====
2
.2
.2.2

Vận tốc trung bình của vật nhỏ A:
t
IA
v
=

=
v


aR)84(
2
1
2
+
Bài 2: Môt chiếc ca nô xuất phát từ điểm A trên đờng cái, ô tô này
cần đến điểm D (trên đồng cỏ) trong thời
gian ngắn nhất. Biết
lCDdAC
==
;
.
Vận tốc ô tô chạy trên đờng cái (v
1
)lớn hơn vận tốc ô tô trên
đồng cỏ (v
2
) n lần.
Hỏi ô tô phải rời đờng cái tại một điểm B cách C một đoạn
x là bao nhiêu?
Giải:
Thời gian ô tô chạy trên đờng cái từ A đến B:
1
1
v
xd
t

=

1
Vt lớ Hay v Khú
Thời gian ô tô chạy trên đồng cỏ từ B đến D:
2
22
2
v
lx
t
+
=
.
Tổng thời gian chạy từ A đến D của ô tô:
21
ttt
+=
=
1
v
xd

2
22
v
lx
+
+
+

=
1
v
xd
1
22
.
v
lx
n
+
.
Đặt:
( )
1
22
v
lxnxd
xf
++
=


( )
1
1
'
v
xf
=
22
1
lxv
nx
+
+
22
1
22
. lxv
lxnx
+
+
=
.
f(x) = 0

x=
1
2

n
l
.
Bảng biến thiên:

Vậy ô tô phải rời đờng cái tại B cách C một đoạn
=
x

1
2

n
l
, lúc đó thời gian ngắn nhất cần
thiết của ô tô sẽ là:
1
2
min
1
v
nld
t
+
=
.
Bài 3: Trên mặt phẳng nằm ngang có một cột trụ bán kính R thẳng đứng, ngời ta dùng một sợi dây
chỉ mảnh không dãn, khối lợng không đáng kể để nối một vật nhỏ với một điểm trên vành trụ, điểm
này sát mặt phẳng ngang.
Ban đầu vật nhỏ nằm yên trên mặt phẳng và dây
ở t thế căng, lúc này chiều dài dây là L. Truyền cho
vật vận tốc v
0
hớng vuông góc với dây và vật chuyển
động trên mặt phẳng ngang cuốn dây vào trụ.
Hỏi sau bao lâu dây cuốn hết trụ? Giả thiết
trong khi chuyển động dây luôn nằm ngang.
Bỏ qua ma sát và bề dày của dây.
Giải:
Ta nhận thấy ngay không có lực nào tác dụng vào vật sinh công, do vậy động năng của vật đợc
bảo toàn do vậy nó có vận tốc không đổi v
0
.
Tại một thời điểm nào đó dây có chiều dài l, xét một thời gian vô cùng bé dt vật đi đợc cung
AB:
=ld=v
0
dt.
Do

Rdl
=


d
=
R
dl
thế vào phơng trình trên ta đợc:
2
Vt lớ Hay v Khú

R
dl
l
=
dtv
0
Lấy tích phân hai vế:

L
R
ldl
0
=

t
dtv
0
0


R
1
.
2
2
l
L
0
tv
0
=

t
0



R
L
2
2

tv
0
=



Rv
L
t
0
2
2
=
.
Vậy thời gian để dây cuốn hết trụ sẽ là:
Rv
L
t
0
2
2
=
.
Bài 4: Có hai vật m
1
và m
2
chuyển động thẳng đều với vận tốc lần lợt là
1
v


2
v

. Vật m
2
xuất
phát từ B.
Tìm khoảng cách ngắn nhất giữa chúng trong quá trình
chuyển động và thời gian đạt đợc khoảng cách đó? Biết
khoảng cách ban đầu giữa chúng là
l
và góc giữa hai đờng
thẳng là

.
Giải:
Giả sử sau thời gian
t
khoảng cách giữa hai vật là ngắn nhất.
Khoảng cách đó sẽ là:


cos'..'2''
22
BBBABBBAd
+=




cos)(2)()(
21
2
2
2
1
tvtvltvtvld
+=
=
2
21
2
2
221
2
1
)cos(2)cos2( ltvvltvvvv
++++

Ta xem biểu thức trong căn là một tam thức bậc hai ẩn số
t
, với

22
2
2
sin4 vl
=
, d sẽ đạt giá
trị nhỏ nhất khi tam thức đó nhận giá trị nhỏ nhất,
hay

=
min
dd

2
221
2
1
21
cos2
)cos(
vvvv
vvl
t
++
+
=


Và khoảng cách bé nhất giữa chúng lúc đó sẽ là:
a
d
4
min

=




=
min
d
2
221
2
1
2
cos2
sin
vvvv
lv
++


Bài 5: Có hai tàu A và B cách nhau một khoảng a đồng thời tàu A và B chuyển động với vận tốc
không đổi lần lợt là v và u
( )
uv
>
. Tàu B chuyển động trên một đ-
ờng thẳng (đờng thẳng này vuông góc với đoạn thẳng nối các vị trí
ban đầu của hai tàu, còn tàu A luôn hớng về tầu B.
Hỏi sau bao lâu tàu A đuổi kịp tàu B ?
Giải:
Ta gắn hệ trục
xy0
trùng với mặt phẳng nớc và trục 0x
cùng phơng chiều với chuyển động của tàu B , còn tàu A nằm
trên phần dơng của trục 0y ở vị trí ban đầu có toạ độ là
( )
a,0
.
Tàu A chuyển động với vận tốc
v
luôn hớng về phía tàu B với
vận tốc gồm hai thành phần:
3
Vật lí Hay và Khó








−==
==
α
α
sin
cos
v
dt
dy
v
v
dt
dx
v
y
x
LÊy vÕ chia vÕ hai ph¬ng tr×nh trªn vµ ta rót ra:


dt
dy
dt
dy
dt
dx
α
α
cot
tan
1
−=−=
(1)
Ta l¹i cã:
αα
cottan yxut
xut
y
=−⇒

=
(2)
§¹o hµm 2 vÕ cña (2) ta ®îc:

dt
dy
dt
dy
dt
dx
u
α
α
α
2
sin
cot
−=−
(3)
Thay (1) vµo (3) ta suy ra:

dt
dy
u
α
α
2
sin
−=
(4)
MÆt kh¸c:
α
α
sin
sin
v
dy
dtv
dt
dy
−=⇒−=
(5)
Thay dt tõ (5) vµo (4):
α
α
sin
d
dy
y
vu
=
hay
α
α
sin
d
y
dy
v
u
=
LÊy tÝch ph©n 2 vÕ:

∫∫
=
α
π
α
α
2
sin
d
y
dy
v
u
y
a







=⇔
2
tanlnln
α
a
y
v
u
Suy ra
v
u
a
y






=
2
tan
α
MÆt kh¸c ta l¹i cã:

=
+
=
2
tan1
2
tan2
sin
2
α
α
α
v
u
v
u
a
y
a
y






+






=
+








2
2
tan
2
tan
2
1
αα

α
sinv
dy
dt
−=
nªn




















+






−=

a
y
d
a
y
a
y
v
a
dt
v
u
v
u
2
(*)
LÊy tÝch ph©n 2 vÕ ph¬ng tr×nh (*):

∫∫




















+






−=

0
0
2
a
v
u
v
u
t
a
y
d
a
y
a
y
v
a
dt
4
Vt lớ Hay v Khú













+
+

=
v
u
v
u
v
a
t
1
1
1
1
2
hay

=
t

22
uv
av

Vậy sau thời gian
22
uv
av

tàu A sẽ đuổi kịp tầu B.
Bài toán đuổi bắt có nhiều dạng khác nhau, phơng pháp đa năng để giải các loại bài toán này
chính là phơng pháp vi phân . Tuy nhiên còn có những ph ơng pháp đặc biệt để giải chúng, các bạn
có thể tham khảo cuốn Lãng mạn toán học của giáo s Hoàng Quý có nêu ra một trong những phơng
pháp đặc biệt đó để giải bài toán sau:
Có hai tàu A và B cách nhau một khoảng a đồng thời tàu A và B chuyển động cùng vận tốc. Tàu B chuyển
động trên một đờng thẳng (đờng thẳng này vuông góc với đoạn thẳng nối các vị trí ban đầu của hai tàu), còn tàu
A luôn hớng về tầu B.
Hỏi sau một thời gian đủ lâu thì hai tàu chuyển động trên cùng một đờng thẳng và khoảng cách giữa chúng
không đổi. Tính khoảng cách này ?
Đáp số:
2
a
.
Bài 6: Vật m
2
đang đứng yên trên mặt sàn nằm ngang nhẳn cách bờ tờng một khoảng d. Vật m
1
chuyển động tới va chạm hoàn toàn đàn hồi với vật m
2
(m
1
> m
2
), vật m
2
lại va chạm đàn hồi
với bờ tờng và gặp m
1
lần 2. Va chạm
lần 2 xảy ra cách bờ tờng một khoảng
là bao nhiêu?
Tìm điều kiện để điểm va chạm lần 2 cách điểm va chạm lần 1 một khoảng là d/2 ?
Giải :
Chọn trục toạ độ nh hình vẽ.
Gọi v
1
,v
1
lần lợt là vận tốc của vật 1 trớc và sau khi va chạm.
Gọi v
2


v
2
là vận tốc của vật 2 trớc và sau khi va chạm (các vận tốc
v
1
,v
2
,v
1
,v
2
mang giá trị đại số).
Sau va chạm :

( )
21
22121
'
1
2
mm
vmvmm
v
+
+
=
=
1
21
21
v
mm
mm
+


( )
1
21
1
21
11212
'
2
22
v
mm
m
mm
vmvmm
v
+
=
+
+
=
(do v
2
= 0)
5
Vt lớ Hay v Khú
Nhận thấy v
1
,v
2
đều dơng, chứng tỏ sau va cham chúng chuyển động cùng chiều ox.
Gọi điểm va chạm lần 2 cách tờng một đoạn x, thời gian giữa 2 lần va cham là :

'
'
2
1
v
xd
v
xd
t
+
=

=
(1)
(do sau va chạm vào tờng của m
2
thì nó vẫn có vận tốc nh cũ nhng đã đổi hớng
'
1
''
2
vv
=
.
Thế v
1
và v
2
từ trên vào (1) ta suy ra :

=
x

d
mm
mm
21
21
3

+
Để va chạm lần 2 cách lần 1 một đoạn
2
d
thì:
22
dd
dx
==

hay
23
21
21
d
d
mm
mm
=

+



21
3mm
=
.
Bài 7: Một hạt chuyển động theo chiều dơng của trục ox với vận tốc sao cho
xav
=
(a là hằng
số dơng). Biết lúc t = 0 hạt ở vị trí x=0.
Hãy xác định :
a. Vận tốc và gia tốc của hạt theo thời gian.
b. Vận tốc trung bình trong khoảng thời gian từ vị trí x = 0 đến vị trí x.
Giải:
a. Theo đề bài :
xa
dt
dx
xav
==

hay
adt
x
dx
=
Nguyên hàm hai vế :

+==
catxdta
x
dx
2
Do
0
=
t
thì
0
=
x

0
=
c

Do vậy
2
2
4
2 t
a
xatx
==
Vận tốc của vật
'x
dt
dx
v
==
6
Vt lớ Hay v Khú

t
a
v
2
2
=
Gia tốc của vật :

''
2
2
x
dt
xd
w
==

2
2
a
w
=
b. Vận tốc trung bình
t
a
t
x
v
4
2
==

2
xa
v
=
Bài 8: Ném một viên đá từ điểm A trên mặt phẳng nghiêng với vận tốc
0
v

hợp với mặt phẳng
ngang một góc

=60
0
, biết
0
30
=

. Bỏ qua sức cản của không khí.
a. Tính khoảng cách AB từ điểm ném đến điểm viên đá rơi.
b. Tìm góc

hợp bởi phơng véc tơ vận tốc và phơng ngang ngay sau viên đá chạm mặt
phăng nghiêng và bán kính quỹ đạo của viên đá tại B.
Giải:
a. Chọn hệ trục oxy gắn o vào điểm A và trục ox song song với phơng ngang Trong quá trình
chuyển động lực tác dụng duy nhất là trọng lực
P

.
Theo định luật II Newton:

amP


=
Chiếu lên:
0x:
x
ma
=
0

0
=
x
a
0y:
y
maP
=

ga
y
=
Phơng trình chuyển động của vật theo hai trục ox và oy:






=
=
)2(
2
1
.sin
)1(.cos
2
0
0
gttvy
tvx



Khi viên đá rơi xuống mặt phẳng nghiêng:
7
Vt lớ Hay v Khú




=
=
)4(sin
)3(cos


ly
lx
T hế (3) vào (1) ta rút ra t thế vào (2) và đồng thời thế (4) vào (2) ta rút ra :



2
2
0
cos.
)cos.sincos..(sincos2
g
v
l

=



2
2
0
cos
)sin(.cos2
g
v
l

=



=
l
g
v
3
2
2
0
b. Tại B vận tốc của vật theo phơng ox là:


cos
0
vv
x
=
2
0
v
=
Khi vật chạm mặt phẳng nghiêng :


cos
3
2
cos
2
0
g
v
lx
==
hay

cos
3
2
.cos
2
0
0
g
v
tv
=
;
Suy ra thời gian chuyển động trên không của viên đá:



cos3
cos2
0
g
v
t
=
=
3
2
0
g
v
Vận tốc theo phơng oy tại B:

gtvv
y
=

sin
0


323
2
sin
00
0
vv
vv
y
==




tan
=
3
1
2
32
0
0
=

=
v
v
v
v
x
y


0
30
=

do
<=
32
0
V
v
y
0 nên lúc chạm mặt phẳng nghiêng
v

hớng xuống.
Lực hớng tâm tại B:

R
v
mmgF
ht
2
cos
==



cos
2
g
v
R
=
Với:
3124
2
0
22
222
v
vv
vvv
yx
=+=+=


=
R

g
v
.33
2
2
0
8
Vt lớ Hay v Khú
Bài 9: Một ngời đứng ở sân ga nhìn ngang đầu toa thứ nhất của một đoàn tàu bắt đầu chuyển động
nhanh dần đều. Toa thứ nhất vợt qua ngời ấy sau thời gian
1
t
.
Hỏi toa thứ n đi qua ngời ấy trong thời gian bao lâu?
Biết các toa có cùng độ dài là S, bỏ qua khoảng nối các toa.
Giải:
Toa thứ nhất vợt qua ngời ấy sau thời gian t
1
:

2
2
1
at
s
=
a
S
t
2
1
=
n toa đầu tiên vợt qua ngời ấy mất thời gian
n
t
:

2
.
2
n
ta
ns
=

a
nS
t
n
2
=
;

1

n
toa đầu tiên vợt qua ngời ấy mất thời gian
1

n
t
:

( )
2
1
2
1

=
n
at
sn


a
Sn
t
n
)1(2
1

=

Toa thứ n vợt qua ngời ấy trong thời gian
t

:

)1(
2
1
==

nn
a
S
ttt
nn
.

=
t
1
)1( tnn

Bài 10: Một chất điểm chuyển động từ A đến B cách A một đoạn s. Cứ chuyển động đợc 3 giây
thì chất điểm lại nghỉ 1 giây. Trong 3 giây đầu chất điểm chuyển động với vận tốc
s
m
v 5
0
=
.
Trong các khoảng 3 giây tiếp theo chất điểm chuyển động với vận tốc 2v
o
, 3v
0
, , nv
0
.
Tìm vận tốc trung bình của chất điểm trên quảng đờng AB trong các trờng hợp :
a. s = 315 m ;
b. s = 325 m .
Giải:
Đặt:
)(3
1
st
=

Gọi quảng đờng mà chất điểm đi đợc sau
1
nt
giây là s:

n
ssss
+++=
...
21

Trong đó s
1
là quảng đờng đi đợc của chất điểm trong 3 giây đầu tiên. s
2
,s
3
,,s
n
là các quảng đ-
ờng mà chất điểm đi đợc trong các khoảng 3 giây kế tiếp.
Suy ra:

)...21(...2
1010101.0
ntvtnvtvtvS
+++=+++=

)1(5,7
2
)1(
10
+=
+
=
nntv
nn
S
(m)
a. Khi
ms 315
=

7,5n(n+1) = 315




=
=
7
6
n
n
(loại giá trị n=-7)
Thời gian chuyển động:

)(231
1
snntt
=+=
Vận tốc trung bình:
23
315
==
t
s
v

=
v
)/(7,13 sm
.
b. Khi
ms 325
=
:
Thời gian đi 315 mét đầu là 23 giây
9
Vt lớ Hay v Khú
Thời gian đi 10 mét cuối là :

)(29.0
5.7
1010
1
s
v
t
n
===
+
Vận tốc trung bình:

129,023
325
++
=
v

=
v

)/(38,13 sm
Bài 11 : Hai vật chuyển động với vận tốc không đổi trên hai đờng thẳng vuông góc với nhau cho v
1
= 30m/s , v
2
= 20m/s. Tại thời điểm khoảng cách giữa hai vật nhỏ nhất thì vật một giao điểm của
quỹ đạo đoạn S
1
= 500m, hỏi lúc đó vật hai cách giao điểm trên một đoạn S
2
là bao nhiêu?
Giải:
Gọi khoảng cách trên đầu của vật (1) và (2) tới vị trí giao nhau của hai quỹ đạo là d
1
và d
2
. Sau
thời gian t chuyển động khoảng cách giữa chúng là:

2
2211
)()( tvdtvdd
+=
=
2
2
2
12211
22
2
2
1
)(2)( ddtdvdvtvv
++++

min
dd
=
2
2
2
1
2211
vv
dvdv
t
+
+
=
Khi đạt đợc khoảng cách ngắn nhất giữa hai vật thì :

2
2
2
1
21122
2
2
2
1
2211
111
)(
vv
dvdvv
vv
dvdv
vdS
+

=
+
+
=
Lúc đó:
tvdS
222
=

=
22
dS
2
2
2
1
12211
2
2
2
1
2211
2
)(
vv
dvdvv
vv
dvdv
v
+

=
+
+


)(750
20
50030
2
11
2
m
v
Sv
S
=

=

=
Vậy lúc hai vật có khoảng cách ngắn nhất thì vật thứ hai cách giao điểm trên một
đoạn
=
2
S

m750
.
Bài 12: Một chiếc côngtenơ đặt sao cho mặt trên nằm ngang đợc cần cẩu cẩu lên thẳng đứng lên
cao với gia tốc a = 0,5m/s
2
. Bốn giây sau khi rời mặt đất ngời ngồi trên mặt côngtenơ ném một hòn
đá với vận tốc v
0
= 5,4m/s theo phơng làm với mặt phẳng ngang côngtenơ góc
0
30
=

.
a. Tính thời gian từ lúc ném đá đến lúc nó rơi xuống mặt đất. Biết côngtenơ
cao h = 6(m)
b. Tính khoảng cách từ nơi đá chạm đất đến vị trí ban đầu của tấm bê tông
(coi nh một điểm) lấy g = 10m/s
2
.
Giải:
a. Sau 4s độ cao của ngời đứng trên mật côngtenơ là:

)(10
2
45
6
2
22
m
ta
H =

+=

+
Vận tốc của ngời lúc đó:

s
m
tav 24.5,0.
1
===
.
Gọi

0
v
là vận tốc của viên đá đối với ngời thì vận tốc viên
đá đối với đất :
10
Vt lớ Hay v Khú

10

+=
vvv
Chiếu lên:
0x:
)/(7,486.04,5cos
0
smvv
x
==

0y:
)/(7,4
2
4,5
2sin
01
smvvv
y
=+=+=


1
=
x
y
v
v
tg

vậy
0
45
=


Chọn trục oxy nh hình vẽ gắn vào mặt đất. Phơng trìn chuyển động của viên đá theo phơng
oy:
2
sin10
2
gt
tvy
+=

với
)/(65,6
22
smvvv
yx
=+=
vậy:
2
57,410 tty
+=
Lúc đá rơi xuống đất: y = 0


057,410
2
=+
tt




t

s2

b. Khoảng cách từ nơi đá rơi đến vị trí ban đầu của côngtenơ:

===
2.7,4tvL
x

m4,9
.
Bài 13: Ngời ta đặt một súng cối dới một căn hầm có độ sâu h. Hỏi phải đặt súng cách vách
hầm một khoảng l bao nhiêu so với phơng ngang để tầm xa S của đạn trên mặt đất là lớn nhất?
Tính tầm xa này biết vận tốc đầu của đạn khi rời súng là
0
v
.
Giải:
Phơng trình vận tốc của vật theo phơng ox :


cos
0
vv
x
=
Phơng trình vận tốc của vật theo phơng oy:

gtvv
y
=

sin
0

Phơng trình chuyển động:

tvx
=

cos
0
;

2
sin
2
0
gt
tvy
=

Phơng trình vận tốc:


cos
0
vv
x
=
;

gtvv
y
=

sin
0
Để tầm xa x là lớn nhất thì tại A vận tốc của vật phải hợp với mặt ngang một góc 45
0

nghĩa là tại A:

0
cossin
v
g
tvv
yx


==

(1)
Hơn nữa ta phải có sau thời gian này:
11
Vt lớ Hay v Khú






=
=




=
=
)3(
2
sin
)2(cos
2
0
0
h
gt
tv
ltv
hy
lx



Từ (2)

cos
0
v
l
t
=
(3) kết hợp với (1)
)cos.(sincos
2
0

=
g
v
l
(4)
Thay t từ (1) vào (3) ta đợc:

2
1
sin
2
0
2
+=
v
gh

;
2
0
2
2
1
cos
v
gh
=

Thế vào (4):

)coscos(sin
2
2
0

=
g
v
l

=
l

)
2
1
4
1
(
2
0
4
0
22
2
0
v
gh
v
hg
g
v
+
Từ (1) :








++=
+
=
2
0
2
0
2
0
00
2
0
2
0
2
1
2
1
2
1
2
1
2
1
v
gh
v
gh
v
gh
vvv
g
v
gh
v
gh
t
y
2
0
2
1
v
gh
v
y
=
)1()
2
1
()
2
1
()
2
1
(
2
0
2
0
2
0
2
0
2
0
+=+=
v
v
gh
v
gh
v
gh
vv
A

=
max
S

( )
g
v
v
gh
g
v
A
1.
2
1
2
0
2
0
2
+









=
Vậy phải đặt súng cách vách hầm một khoảng:
)
2
1
4
1
(
2
0
4
0
22
2
0
v
gh
v
hg
g
v
l
+=
thì tầm xa của đạn trên mặt đất là lớn nhất và
tầm xa này bằng
( )
g
v
v
gh
1.
2
1
2
0
2
0
+









.
Bài 14: Một chất điểm chuyển động chậm dần trên một đờng thẳng với một gia tốc mà độ lớn w
phụ thuộc vận tốc theo định luật
vaw
=
trong đó a là một hằng số dợng. Tại thời điểm ban đầu
vận tốc của hạt bằng v
0
.
Hỏi quảng đờng mà hạt đi đợc cho đến khi dừng lại và thời gian đi quảng đờng ấy ?
Giải:
Về độ lớn:
vaw
=
a. Về dấu ta có:
12
Vt lớ Hay v Khú

Catv
adt
dt
dv
va
dt
dv
vaw
+=
===
2
Lúc
0
=
t
,
0
=
v
00
222 vatvvC
+==

2
2
00
4
. t
a
tvavv
+=
Khi chất điểm dừng lại thì v = 0:

0
2
v
a
t
=
(*)
Quảng đờng vật đi đợc cho đến lúc dừng lại:


+==
0)
2
0
2
2
00
2
0
)
4
.(
v
a
v
a
dtt
a
tvavvdtS


=
S

2
3
0
3
2
v
a
S
=
b. Từ (*) ta có thời gian đi quảng đờng ấy:
=
t
0
2
v
a
.
Bài 15: ở mép của một chiếc bàn chiều cao h, có một quả
cầu đồng chất bán kính R = 1(cm)
)( hR

. Đẩy cho tâm 0
của quả cầu lệch khỏi đờng thẳng đứng đi qua A, quả cầu
rơi xuống đất vận tốc ban đầu bằng 0. Tính thời gian rơi và
tầm xa của quả cầu(g = 10m/s
2
).
Giải:
Ban đầu quả cầu xoay quanh trục quay tức thời A. Lúc bắt đầu rơi khỏi bàn vận tốc của nó là v,
phản lực N bằng 0, lực làm cho quả cầu quay tròn quanh A là trọng lực

cosp
:


cos9cos
2
2
Rv
R
v
mp
==
(1)
Theo định luật bảo toàn năng lợng:

2
2
1
cos mvmgRmgR
+=

(2)
Từ (1) và (2) suy ra:

3
5
sin
3
2
cos
==

Thay
3
2
cos
=

vào phơng trình (1) ta đợc vận tốc của vật lúc đó:

gRv
3
2
=
Giai đoạn tiếp theo vật nh một vật bị ném xiên với góc

và với vận tốc ban đầu:

gRv
3
2
=
Theo đề bài
hR
<<
do vậy ban đầu ta xem
A

0
.
Chọn trục
xy'0
nh hình vẽ
A

'0
.
13
Vt lớ Hay v Khú






+=
=
2
2
1
.sin
.cos
gttvy
tvx


Khi chạm đất
hy
=
, nên:

hgttv
=+
2
2
1
.sin

Thay







=
=
3
5
sin
3
2

gRv
vào phơng trình trên ta tìm đợc:








<
+
=
++
=
)(0
.33
541010
.33
541010
2
1
loai
g
ghgRgR
t
g
ghgRgR
t
Vậy sau
=
t

g
ghgRgR
.33
541010
++
thì vật sẽ rơi xuống đất.
Tầm bay xa của vật:

.
3
2
.
3
2
.cos gRtvxS
===

g
ghgRgR
.33
541010
++

=
S
( )
ghgRgR
g
R
541010
2
27
2
++
.
Bi 16: Mt cht im chuyn ng chm dn trờn bỏn kớnh R. sao cho ti mi im gia tc tiộp
tuyn v gia tc phỏp tuyn luụn cú ln bng nhau. Ti thi im ban u t=o, vn tc ca cht im
ú l
0
v
.
Hóy xỏc nh:
a. Vn tc ca cht im theo thi gian v theo quóng ng i c.
b. Gia tc ton phn theo vn tc v quóng ng i c.
Gii:
a. Theo bi ta cú:

R
v
dt
dv
aa
nt
2
==


R
dt
v
dv
=
2
(1)
Ly tớch phõn 2 v ta cú:

R
t
vvR
dt
v
dv
tv
v
==

0
0
2
11
0
14
Vật lí Hay và Khó


=
v
t
R
v
v
0
0
1
+
từ (1)
R
ds
v
dv
=−⇒
(2) (ds = vdt )
Lấy tích phân 2 vế phương trình (2):

R
s
v
v
R
ds
v
dv
Sv
v
=−⇔=−
∫∫
0
0
ln
0



=
v

e
R
S
v

.
0
.
b. Gia tốc toàn phần:

22
22
ntnt
aaaaa
==+=
Gia tốc toàn phần theo vận tốc:

=
a

2
2
R
v
Gia tốc toàn phần theo quãng đường đi được:

=
a

2
.
2
2
0
R
ev
R
s

.
Bài 17: Hai vòng tròn bán kính R, một vòng đứng yên, vòng còn lại chuyển động tịnh tiến sát vòng
kia với vận tốc
0
v

. Tính vận tốc của điểm cắt C giữa hai vòng tròn khi khoảng cách giữa hai tâm
d
=
21
00
.
Giải:
Chọn gốc thời gian t = 0 lúc 2 vòng tròn bắt đầu tiếp xúc ngoài.
Tại một thời điểm nào đó sau gốc thời gian thì ta có phương
trình chuyển động của điểm C :













−=−===
=−=−=
2
2
0
1
2
1cos1sin
22
0
R
d
RRRACy
d
tv
RADDx
αα
Ta có:

0
' vd
−=
Ta suy ra:









=
=
4
4
2
22
dR
y
d
x

15
Vt lớ Hay v Khú









=


=
==

22
0
22
0
42
.
42.2
'2
2
'
2
1
dR
vd
dR
dd
v
v
dv
Cy
Cx

( )
2
22
0
2
0
22
.
42
.
2
dR
dvv
vvv
CyCx

+






=+=



=
v
22
0
4 dR
Rv

Bi 18: Hai vt cỏch nhau 100m chuyn ng trờn mt ng thng n gp nhau vi vn tc ln
lt l
smvsmv /5;/5
21
==
, trong khong 2 vt trờn on thng m chỳng chuyn ng cú mt
vt nh luụn chuyn ng thng u vi vn tc v = 30 m/s cựng chuyn ng trờn ng thng
m 2 vt (1) v (2) chuyn ng. Mi khi vt trờn n gp vt (1) hoc vt (2) thỡ vn tc ca nú s
i hng ngc tr li v coi nh vn gi nguyờn ln vn tc ca nú. Hi khi vt (1) v võt
(2) gp nhau thỡ quóng ng vt nh i c cú tng chiu di l bao nhiờu?
Gii:
Vn tc ca vt (1) i vi mc vt (2) l:

2112
vvv


=

10
2112
=+=
vvv
(m/s).
Thi gian t ban u n lỳc vt (1) v vt (2)
gp nhau l:
10
10
100
12
===
v
AB
t
(s)
Quóng ng vt nh i c tng cng cho n lỳc vt (1) v vt (2) gp nhau l:

30010.30.
===
tvs
(m).
2. Động lực học chất điểm:
Bài 19: ở mép đĩa nằm ngang bán kinh R có đặt một đồng tiền. Đĩa quay với vận tốc
t

=
(

là gia tốc góc không đổi). Tại thời điểm nào đồng tiền sẽ văng ra khỏi đĩa. Nếu hệ số ma sát
trợt giữa đồng tiền và đĩa là
à
.
Giải:
Tại thời điểm t gia tốc pháp tuyến của vật:

Ra
n
2

=
=
Rt
22

.
Gia tốc tiếp tuyến:

R
dt
dtR
dt
dv
a
t


===
Gia tốc toàn phần:

22
tn
aaa
+=
=
22424
RtR

+
Lực làm đồng tiền chuyển động tròn chính là lực ma sát nghỉ.
Ta có:

22424
RtRmmaF
msn

+==
=
Rm

1
42
+
t

Vật có thể nằm trên đĩa nếu lực ma sát nghỉ tối đa bằng lực ma sát trợt:
16

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay

×