Tải bản đầy đủ

www thuvienhoclieu com 110 cau trac nghiem PHUONG TRINH MAT PHANG co dap an

www.thuvienhoclieu.com

PHƯƠNG TRÌNH MẶT PHẲNG
Câu 1: Câu nào sau đây đúng? Trong không gian Oxyz.
r r
r
r

a
, b là một cặp
A. Hai vectơ a và b không cùng phương nằm trong mặt phẳng (P)
vectơ chỉ phương của (P).
r
r
a
b
B. Mặt phẳng (P) xác định bởi hai đường
r r thẳng song song với (D) và (D’): và là hai vectơ có giá
lần lượt song song với (D) và (D’) ⇒ a, b là một cặprvectơ
r chỉ phương của (P).
r

r
C. a và b có giá song song với mặt phẳng (P) ⇒ a, blà một cặp vectơ chỉ phương của (P).
D. Hai câu A và B.
Câu 2: Câu nào sau đây đúng? Trong không gian Oxyz:
r r
r
r

a
, b là một
a
b
A. Hai vectơ và không cùng phương có giá lần lượt song song với mặt phẳng (P)
cặp vectơ chỉ phương của (P).
B. Hai mặt phẳng phân biệt có cùng một cặp vectơ chỉ phương thì song song với nhau.
C. Một mặt phẳng chỉ có một cặp vectơ chỉ phương.
D. Hai câu A và B.
Câu 3: Câu nào sau đây sai? Trong hệ trục trực chuẩn Oxyz:
A. Một mặt
được xác định khi biết một điểm và một vectơ chỉ phương
r phẳng
r
r r của nó.
r
r
B. Cho a ≠ 0 chứa trong mặt phẳng (P) và b cùng phương với a thì a , b là một cặp vectơ chỉ
phương của (P).

r r
r
r

a
, b
a
b
C. Đường thẳng (D) vuông góc với mặt phẳng (P) và hai giá chéo nhau của hai vectơ và
là một cặp vectơ chỉ phương của (P).
D. Hai câu A và B.
r
r
a = ( a1 , a2 , a3 ) , b = ( b1, b2 , b3 )
Câu 4: Trong hệ truc trực chuẩn Oxyz,
là một cặp vectơ chỉ
r cho
phương của mặt phẳng (P), pháp vectơ n của (P) là:
( a b − a2b1, a2b3 − a3b2 , a3b1 − a1b3 )
( a b − a3b2 , a3b1 − a1b3 , a1b2 − a2b1 )
A. 1 2
B. 2 3
( a b − a3b1, a2b1 − a1b2 , a3b2 − a2b3 )
( a b − a1b2 , a3b2 − a2b3 , a1b3 − a3b1 )
C. 1 3
D. 2 1
r
r
a và b là một cặp vectơ chỉ phương của mặt phẳng (P) và vectơ
Câu
5:
Trong
không
gian
Oxyz
cho
r r
n ≠ 0.
r
r
r
r
a và b thì n là một pháp vectơ của (P).
A. Nếu n
vuông
góc
với
r
r
n có giá vuông góc với (P) thì n là một pháp vectơ của (P).
B. Nếu
r r
[
a
, b ] là một pháp vectơ của (P).
C.
D. Ba câu A, B và C.
Câu 6: Câu nào sau đây đúng? Trong không gian Oxyz:
A. Hai mặt phẳng (P) và (Q) có cùng một pháp vectơ thì chúng song song .
B. Một mặt phẳng có một pháp vectơ duy nhất.
C. Một mặt phẳng được xác định nếu biết một điểm và một pháp vectơ của nó.
D. Hai câu A và B.
Câu 7: Câu nào sau đây đúng? Trong không gian Oxyz:
A. Hai mặt phẳng song song có chung vô số pháp vectơ.
r
n
B. Đường thẳng (D) cùng phương với giá (d) của pháp vectơ của mặt phẳng (P) thì (D) vuông góc
với (P).
r
r
C. Cho đường thẳng (d) song song với mặt phẳng (P), nếu n có giá giá vuông góc với (d) thì n là một
pháp vectơ của (P).
www.thuvienhoclieu.com

Trang 1


www.thuvienhoclieu.com
D. Hai câu A và B.

(α )

Câu
8: Phương
r
r trình tổng quát của mặt phẳng
a = ( 3,1, −1) b = ( 1, −2,1)
,
là:
x

4
y

7
z

16
=
0
A.
B. x − 4 y + 7 z + 16 = 0

qua điểm

B ( 3, 4, −5 )

C. x + 4 y + 7 z + 16 = 0

và có cặp vectơ chỉ phương
D. x + 4 y − 7 z − 16 = 0

A ( 3, −1, 2 ) B ( 4, −2, −1) C ( 2, 0, 2 )
,
,
là:
x
+
y
+
2
=
0
x

y

2=0
C.
D.
Câu 10: Trong không gian Oxyz, phương trình tổng quát của mặt phẳng (P) có pháp vectơ
r
n = ( A , B, C )
là:
Ax + By + Cz + D = 0
A 2 + B2 + C 2 ≠ 0
A.
với
Ax + By + Cz + D = 0
A 2 + B2 + C 2 > 0
B.
với
A 2 + B2 ≠ C 2
C. Ax + By + Cz + D = 0 với
Câu 9: Phương trình tổng quát của mặt phẳng qua
A. x + y − 2 = 0
B. x − y + 2 = 0

D.

Ax + By + Cz + D = 0 với B2 − AC ≠ 0

( xA , yA , zA ) và có
Câu 11: Trong không rgian Oxyz, phương
r trình tổng quát của mặt phẳng (P) qua A
a = ( a1 , a2 , a3 ) , b = ( b1, b2 , b3 )
cặp vectơ chỉ phương
là:
( x − xA ) ( a1b2 − a2b1 ) + ( y − yA ) ( a2b3 − a3b2 ) + ( z − zA ) ( a3b1 − a1b3 ) = 0
A.
( x − xA ) ( a3b1 − a1b3 ) + ( y − yA ) ( a1b2 − a2b1 ) + ( z − zA ) ( a2b3 − a3b2 ) = 0
B.
( x − xA ) ( a2b3 − a3b2 ) + ( y − yA ) ( a3b1 − a1b3 ) + ( z − zA ) ( a1b2 − a2b1 ) = 0
C.
( x − xA ) ( a3b1 − a1b3 ) + ( y − yA ) ( a2b3 − a3b2 ) + ( z − zA ) ( a1b2 − a2b1 ) = 0
D.
Câu 12: Trong không gian Oxyz, cho mặt phẳng (P) có phương trình tổng quát sau đây, với A, B và C ≠
0; Xét câu nào đúng?
( P ) : Ax + By + C = 0 ⇒ ( P ) / / z'Oz
( P ) : Ax + By + C = 0 ⇒ ( P ) / / x'Ox
A.
B.
( P ) : Ax + By + C = 0 ⇒ ( P ) / / y'Oy
C.
D. Hai câu A và B.
Câu 13: Trong không gian Oxyz, cho mặt phẳng (P) có phương trình tổng quát sau đây, với A, B và C ≠
0; Xét câu nào sai?
( P ) : Ax + By + Cz = 0 ⇒ ( P ) qua góc tọa độ O.
A.
( P ) : Ax + By = 0 ⇒ ( P ) chứa x'Ox và y'Oy .
B.
( P ) : Ax + C = 0 ⇒ ( P ) / / x'Ox.
C.
D. Hai câu B và C.
E. Ba câu A, B và C.
Câu
không gian Oxyz, phương trình tổng quát của mặt phẳng (P) chắn trên ba trục
uuu
r u14:
uu
r uTrong
uu
r
Ox, Oy, Oz theo ba đoạn có số đo đại số khác 0 lần lượt là a, b, c:
A.

ax + by + cz − 1= 0

B.

bcx + cay + abz − abc= 0

ax + by + cz − abc= 0
abx + bcy + caz − abc= 0
C.
D.
Câu 15: Trong không gian Oxyz, phương trình của mặt phẳng (P) là:
A 2 + B02 + C02 ≠ 0
A. A0x + B0y + C0z + D0 = 0 với 0
A 2 + B02 + C02 > 0
B. A0x + B0y + C0z + D0 = 0 với 0
www.thuvienhoclieu.com

Trang 2


www.thuvienhoclieu.com
A02 + B02 + C02 = 0

C. A0x + B0y + C0z + D0 = 0 với
Ax By Cz D
+
+
+
=0
m= A 2 + B2 + C 2 , Ax + By + Cz + D = 0
m m m
D. m
với
là phương trình tổng
quát của (P).

A ( 2, −1,3) B ( 3,1, 2 )
Câu
16:
Phương
trình
tổng
quát
của
mặt
phẳng
đi
qua
,
và song song với vectơ
r
a = ( 3, −1, −4 )
là:
9
x
+
y

7
z + 40 = 0 B. 9 x − y + 7 z − 40 = 0 C. 9 x − y − 7 z + 40 = 0 D. 9 x + y + 7 z − 40 = 0
A.
A ( 4, −1,1) B ( 3,1, −1)
Câu 17: Phương trình tổng quát của mặt phẳng đi qua
,
và song song với trục Ox
là:
A. y + z + 2 = 0
B. y − z − 2 = 0
C. y + z = 0
D. y − z = 0
uuuu
r
H ( 2, 2, 2 )
OH
Câu 18: Viết phương trình của mặt phẳng (P) qua điểm
và nhận
làm vectơ pháp tuyến.
( P) : x+ y+ z = 6
( P) : x+ y = 4
A.
B.
( P) : y+ z = 4
C.
D. Ba câu A, B và C đúng.
A ( 3, −2,1) B ( −4, 0,3) , C ( 1, 4, −3) , D ( 2,3,5 )
Câu 19: Cho tứ diện ABCD có
,
. Phương trình tổng quát
của mặt phẳng chứa AC và song song với BD là:
A. 12 x + 10 y + 21z + 35 = 0
B. 12 x − 10 y + 21z − 35 = 0
C. 12 x − 10 y − 21z − 35 = 0

D. 12 x + 10 y − 21z + 35 = 0

A ( 4,3, 2 ) , B ( −1, −2,1) , C ( −2, 2, −1)
Câu 20: Cho vectơ chỉ phương điểm
. Phương trình tổng quát của
mặt phẳng qua A và vuông góc với BC là :
A. x − 4 y + 2 z + 4 = 0
B. x + 4 y − 2 z − 4 = 0
C. x − 4 y + 2 z + 4 = 0
D. x − 4 y − 2 z − 4 = 0
A ( 1, −4, 4 ) , B ( 3, 2, 6 )
Câu 21: Cho hai mặt phẳng điểm
. Phương trình tổng quát của mặt phẳng trung
trực của đoạn AB là:
A. x − 3 y + z + 4 = 0
B. x − 3 y − z + 4 = 0
C. x + 3 y − z − 4 = 0
D. x + 3 y + z − 4 = 0
Câu 22: Phương trình tổng quát của mặt phẳng qua điểm
x + 2 y − z + 1 = 0 và 2 x − y + z − 2 = 0 là:
A. x − 3 y − 5 z − 8 = 0

B. x − 3 y + 5 z − 8 = 0

M ( 3,0, −1)

và vuông góc với hai mặt phẳng

C. x + 3 y − 5 z + 8 = 0

D. x + 3 y + 5 z + 8 = 0

A ( 2, −1,1) B ( −2,1, −1)
Câu 23: Phương trình tổng quát của mặt phẳng đi qua hai điểm
,
và vuông góc
với mặt phẳng 3 x + 2 y − z + 5 = 0 là:
A. x + 5 y + 7 z − 1 = 0
B. x − 5 y + 7 z + 1 = 0
C. x − 5 y − 7 z = 0
D. x + 5 y − 7 z = 0

(α)

Câu 24: Phương trình tổng quát của mặt phẳng
chứa giao tuyến của hai mặt phẳng
2 x − y + 3 z + 4 = 0 và x + 3 y − 2 z + 7 = 0 ,chứa điểm M ( −1, 2, 4 ) là:
A. x + 10 y − 9 z + 17 = 0
B. x − 10 y + 9 z + 17 = 0
C. x − 10 y − 9 z − 17 = 0

D. x + 10 y + 9 z − 17 = 0

( α ) : x + 5 y + z − 10 = 0 và ( β ) : 2 x + y − z + 1 = 0 . Phương trình tổng quát
Câu 25: Cho hai mặt phẳng
( P ) chứa giao tuyến của ( α ) và ( β ) , qua điểm M ( 3, −2,1) là:
của mặt phẳng
A. 3 x + 3 y − z − 2 = 0
B. 3 x + 3 y + z − 2 = 0
C. 3x + 3 y − z + 2 = 0
D. 3 x + 3 y − z − 2 = 0
Câu 26: Cho hai mặt phẳng

( α ) : x + 5 y − z + 1 = 0, ( β ) : 2 x − y + z + 4 = 0
www.thuvienhoclieu.com

.
Trang 3


www.thuvienhoclieu.com
( α ) và ( β ) thì giá trị đúng của cos ϕ là:
Gọi ϕ là góc nhọn tạo bởi
5
5
6
5
A. 6
B. 6
C. 5
D. 5
Câu 27: Ba mặt phẳng x + 2 y − z − 6 = 0, 2 x − y + 3 z + 13 = 0,3 x − 2 y + 3 z + 16 = 0 cắt nhau tại điểm
A. Tọa độ của A là:
A ( 1, 2,3)
A.
A ( 1, −2,3)
B.
A ( −1, −2,3)
C.
A ( −1, 2, −3)
D.
Câu 28: Ba mặt phẳng 2 x + y − z − 1 = 0,3 x − y − z + 2 = 0, 4 x − 2 y + z − 3 = 0 cắt nhau tại điểm A.
Tọa độ của A là:
A ( 1, −2, 3)
A.
A ( 1, −2, −3 )
B.
A ( 1, 2,3 )
C.
A ( −1, 2,3)
D.
Câu 29: Ba mặt phẳng x + 2 y + 4 z − 2 = 0, 2 x + 3 y − 2 z + 3 = 0, 2 x − y + 4 z + 8 = 0 cắt nhau tại điểm
A. Tọa độ của A là:
1

A  4, −2, ÷
2
A. 
B.

1

A  −4, 2, − ÷
2


1

A  −4, 2, ÷
2
C. 
1

A  4, 2, ÷
2
D. 

( α ) : x − 2 z = 0, ( β ) : 3x − 2 y + z − 3 = 0, ( γ ) : x − 2 y + z + 5 = 0 . Mặt phẳng ( P )
Câu 30: Cho 3 mặt phẳng
( α ) , ( β ) ,vuông góc với ( γ ) có phương trình tổng quá :
chứa giao tuyến của
A. 11x + 2 y − 15 z + 3 = 0
B. 11x − 2 y − 15 z − 3 = 0
C. 11x + 2 y + 15 z − 3 = 0

Câu 31: Mặt phẳng

(α)

D. 11x − 2 y + 15 z + 3 = 0
r
r
M ( 3, 4, −5 )
a = ( 3,1, −1) , b = ( 1, −2,1)
có cặp vectơ chỉ phương là
và đi qua
.

( α ) có phương trình tổng quát là:
A. x − 4 y − 7 z − 16 = 0

B. x − 4 y + 7 z + 16 = 0

C. x + 4 y + 7 z + 16 = 0 D. x + 4 y − 7 z − 16 = 0
r
A ( 1, −4,5 ) , B ( −2,3, −4 )
a = ( 2, −3, −1)
( β ) chứa hai điểm
Câu 32: Cho hai điểm
và vectơ
. Mặt phẳng
r
A,B và song song với vectơ a có phương trình :
A. 34 x − 21 y + 5 z − 25 = 0
B. 34 x + 21 y − 5 z + 25 = 0
C. 34 x + 21 y + 5 z + 25 = 0

Câu 33: Cho hai điểm
có phương trình :

C ( −1, 4, −2 )

D. 34 x − 21y − 5 z − 25 = 0

,

D ( 2, −5,1)

.Mặt phẳng chưa đường thẳng CD và song song với Oz

www.thuvienhoclieu.com

Trang 4


www.thuvienhoclieu.com
3
x
+
y

1
=0
B.
C. x − 3 y + 1 = 0

A. 3 x − y + 1 = 0

D. x + 3 y − 1 = 0

M ( 2, − 3, 1 )
Câu 34: Viết phương trình tổng quát của mặt phẳng (P) qua
và vuông góc với đường
A ( 3, − 4, 5) ; B( − 1, 2, 6 ) .
thẳng (D) qua hai điểm
A. 4x − 6y − z + 11= 0
B. 4x + 6y − z + 11 = 0

C.

4x + 6y − z + 25 = 0

D.

4x − 6y − z + 25 = 0

Câu
35: Viết phương
tổng quát của mặt phẳng (P) qua
r
r
a = ( 3, − 1, − 2 ) ; b = ( 0, 3, 4 ) .
A. 2x + 12y + 9z − 5 = 0
2x − 12y + 9z + 53 = 0
C.

A ( 1, − 2, 3 )

và có cặp vectơ chỉ phương

B. 2x + 12y − 9z − 49 = 0
2x − 12y + 9z − 53 = 0
D.

A( − 2, 3, 5); B( − 4, − 2, 3 )
Câu 36: Viết phương trình

r tổng quát của mặt phẳng (P) qua hai điểm
a= ( 2, − 3, 4 )
có một vectơ chỉ phương
.
9x + 3y − z + 4 = 0
9x + 3y − z − 4 = 0
A.
B.
13x − 2y − 8z + 72 = 0
13x + 2y + 8z + 72 = 0
C.
D.
Câu 37: Viết phương trình tổng quát của mặt phẳng (P) qua ba điểm
A ( 2, 0, 3 ) ; B( 4, − 3, 2 ) ; C ( 0, 2, 5 ) .

2x + y + z − 7 = 0 B. 2x + y − z − 7 = 0 C. 2x − y − z + 7 = 0 D. x + 2y + z − 7 = 0
A.
Câu 38: Viết phương trình tổng quát của mặt phẳng trung trực (P) của đoạn AB với
A ( 1, 4, 3 ) ; B( 3, − 6, 5 ) .
A.

x − 5y + z − 1 = 0

B.

C. x + 5y − z + 11 = 0

x + 5y − z − 11 = 0

D. x − 5y + z − 11 = 0

Câu 39: Viết phương trình tổng quát của mặt phẳng (P) qua
(Q): 2x + 5y − 3z + 7 = 0.
A.

2x + 5y − 3z − 8 = 0

B.

C. 2x + 5y − 3z − 18 = 0

M ( − 2, 1, 3 )

và song song với mặt phẳng

2x + 5y − 3z − 7 = 0

D. 2x + 5y − 3z + 8 = 0

E ( 3, − 2, 4 ) ; F ( 1, 3, 6 )
Câu 40: Viết phương trình tổng quát của mặt phẳng (P) qua hai điểm
và song
y'Oy
song với trục
x + y + z − 7 = 0 B. x + z − 7 = 0
x + y + z + 7 = 0 D. x + z + 7 = 0
A.
C.
A ( 1, − 2, 6 ) ; B( 2, 5, 1) ; C ( − 1, 8, 4)
Câu 41: Cho tam giác ABC với
. Viết phương trình tổng quát
của mặt phẳng (P) vuông góc với mặt phẳng (ABC) song song đường cao AH của tam giác ABC.
x + y + z − 3 = 0 B. x + y + z + 3 = 0 C. x − y + z + 3 = 0 D. x − y − z + 3 = 0
A.

Câu 42: Cho ba điểm
phương trình :
A. x + y − 2 z + 5 = 0

A ( 2,1, −1) , B ( 0, −1,3) , C ( 1, 2,1)
B. x − y + 2 z + 5 = 0

. Mặt phẳng qua B và vuông góc với AC có

C. x + y + 2 z + 5 = 0

D. x − y − 2 z + 5 = 0

A ( 1, − 2, 6 ) ; B( 2, 5, 1) ; C ( − 1, 8, 4)
Câu 43: Cho tam giác ABC với
. Viết phương trình tổng quát
của mặt phẳng (R) vuông góc với mặt phẳng (ABC) song song phân giác ngoài AF của góc
x − 23y + 10z − 108 = 0
x + 3y + z = 0
A. A.
B.

www.thuvienhoclieu.com

Trang 5


www.thuvienhoclieu.com
x − 3y − z = 0
D.

3x − z = 0
C.

M ( − 3, 5, 2 )
Câu 44: Viết phương trình tổng quát của mặt phẳng (P) qua
và vuông góc với x'Ox
x − 3= 0
x + 3= 0
x + y − 3= 0
x − y + 3= 0
A.
B.
C.
D.

Câu 45: Cho tứ diện ABCD có
song với AD có phương trình :
A. 8 x − 7 y + 5 z − 60 = 0

A ( 5,1,3 ) , B ( 1, 6, 2 ) , C ( 5, 0, 4 ) , D ( 4, 0, 6 )

. Mặt phẳng chứa BC và song

B. 8 x + 7 y + 5 z − 60 = 0
D. 8 x + 7 y − 5 z − 60 = 0

C. 8 x − 7 y − 5 z − 60 = 0

M ( 2, − 4, 1 ) ; N ( 3, − 2, − 4 )
Câu 46: Viết phương trình tổng quát của mặt phẳng (P) qua hai điểm

3x + 4y − 2z − 5 = 0.
vuông góc với mặt phẳng (Q):
16x + 13y − 2z + 82 = 0
16x − 13y + 2z − 82 = 0
A.
B.
C. 16x − 13y − 2z − 82 = 0
D. 16x + 13y + 2z − 82 = 0

Câu 47: Viết phương trình tổng quát của mặt phẳng (P) qua
phẳng (Q): 2x − 3y + 5z − 4 = 0; (R): x + 4y − 2z + 3 = 0.
A.

14x − 9y + 11z + 43 = 0

B.

C. 14x + 9y + 11z − 43 = 0

E ( − 4, 1, − 2 )

và vuông góc với hai mặt

14x + 9y − 11z − 43 = 0

D. 14x − 9y − 11z + 43 = 0

A ( 3, − 2, 1)
Câu 48: Viết phương trình tổng quát của mặt phẳng (P) qua
và chứa giao tuyến của hai mặt
x + 2y − 4z − 1= 0;
2x − y + 3z + 5 = 0.
(Q):
(R):
14
x

13
y

23
z
+
7
=0
14x + 13y − 23z + 7 = 0
A.
B.
2x − 11y − 5z − 23 = 0
2x + 11y − 5z + 23 = 0
C.
D.
Câu 49: Viết phương trình tổng quát của mặt phẳng (P) chứa giao tuyến của hai mặt phẳng
( S) :2x + 3y − 15z + 3 = 0 và ( T ) :4x − 2y + 3z − 6 = 0 và song song với trục z'Oz .
22x + 7y − 27 = 0
22x + 7y + z − 27 = 0
A.
B.
22x − 7y + 27 = 0
22x − 7y − 27 = 0
C.
D.
uuu
r uuu
r
uuuu
r
Ox
,
Oz
OH
=
4
OH
Câu 50: Từ gốc O vẽ OH vuông góc với mặt phẳng (P), biết
, các góc hợp bởi
với
0
bằng 60 . Viết phương trình tổng quát của (P):

A. x ±
C. x ±

2y + z − 8 = 0

B. x − 2y − z − 8 = 0
D. x − 2y + z + 8 = 0

2y − z − 8 = 0

uuu
r uuu
r
uuuu
r
Ox
,
Oz
Câu 51: Từ gốc O vẽ OH vuông góc với mặt phẳng (P); biết OH = 4 , các góc hợp bởi
với OH
0
bằng 60 . Viết phương trình tổng quát của mặt phẳng (Q) xác định bởi H và trục x'Ox :
A. y − z − 2 − 2 2 = 0
C. y + 2 z = 0

B. y − 2 z = 0
D. y + z + 2 − 2 2 = 0

( β ) : 3x − 2 y + z + 9 = 0. Mặt phẳng ( α )
và mặt phẳng
( β ) có phương trình :
chứa hai điểm A,B và vuông góc với mặt phẳng
A. x + y − z − 2 = 0
B. x − y + z − 2 = 0
C. x − y − z − 2 = 0
D. x + y + z − 2 = 0
Câu 52: Cho hau điểm

A ( −2,3, −1) , B ( 1, −2, −3)

www.thuvienhoclieu.com

Trang 6


www.thuvienhoclieu.com
uuur
uuur
AB = ( 4, − 3, 1 ) ; AC = ( 2, − 1, 3 )

Câu 53: Cho tam giác ABC có
. Viết phương trình tổng quát của
N ( 1, − 2, 3 )
mặt phẳng (P) qua
và song song với mặt phẳng (ABC):
5x + 4y − z + 9 = 0
5x − 4y − z − 9 = 0
A.
B.
C. 4x − 5y − z − 9 = 0
D. 4x + 5y − z + 9 = 0
uuur
uuur
AB = ( 4, − 3, 1 ) ; AC = ( 2, − 1, 3 )
Câu 54: Cho tam giác ABC có
. Viết phương trình tổng quát của
A ( − 1, 2, − 2) .
mặt phẳng (Q) vuông góc với trung tuyến AM tại trọng tâm G của tam giác ABC, biết
9x − 6y + 6z − 1 = 0
9x − 6y − 6z − 1 = 0
A.
B.
3x − 2y + 2z − 1 = 0
3x − 2y − 2z + 1 = 0
C.
D.
A ( − 3, 1, 2 ) ; B( 1, 3, 4 ) ; C ( − 5, 7, 6 ) ; D ( − 1, 5, − 2 ) .
Câu 55: Cho tứ diện có
Viết phương trình
tổng quát của mặt phảng (P) chứa AB và song song với CD
12x − 40y − 16z + 41 = 0
3x − 10y − 4z + 11 = 0
A.
B.
12x + 40y − 16z + 41 = 0
3x − 10y + 4z + 11 = 0
C.
D.
A ( − 3, 1, 2 ) ; B( 1, 3, 4 ) ; C ( − 5, 7, 6 ) ; D ( − 1, 5, − 2 ) .
Câu 56: Cho tứ diện có
Gọi M, N, E lần lượt
là trung điểm của AB, AC, AD. Viết phương trình tổng quát của mặt phẳng (MNE).
7x − 10y − z − 16 = 0
7x − 10y − z + 16 = 0
A.
B.
7x + 10y + z − 16 = 0
7x − 10y + z − 16 = 0
C.
D.
Câu 57: Viết phương trình tổng quát của mặt phẳng (P) qua giao tuyến của hai mặt phẳng
( Q ) : 2x − y + z + 2 = 0; ( R) : x + y − z − 3 = 0 và vuông góc với mặt phẳng ( S) : x − 3y + z − 4 = 0
x + 4y − z − 4 = 0
x − 4y − z + 4 = 0
4x − y − z + 4 = 0
4x + y − z − 4 = 0
A.
B.
C.
D.
( P ) :2x − y + 3z − 5 = 0; ( Q ) : x + y + 2z + 9 = 0; ( R) : x + 2y − 3z + 22 = 0
Câu 58: Ba mặt phẳng sau:
Có điểm chung A có tọa độ là:
( −3,8,1)
( −3, −8,1)
( 1,3, −8)
( 1,−8,3)
A.
B.
C.
D.

( P ) : 2x + 4y − 3z − 12 = 0:
r
n = ( 6,12,−9)
A. Một pháp vector
M ( 3,0, −2)
B. Qua điểm
r
a = ( 2, −1,0) ;
C. Một cặp vector chỉ phương

Câu 59: Mặt phẳng

r
b = ( 3,0,2)

D. Cả ba câu A, B và C.

( P ) :2x + 3y − 2z + 4 = 0; ( Q ) : 2x − y + 2z − 3 = 0. Viết phương trình tổng
Câu 60: Cho hai mặt phẳng
( R) chứa giao tuyến của ( P ) và ( Q ) và qua M ( 1,2,0) .
quát của mặt phẳng
A. 10x − y + 6z − 8 = 0 B. 10x + y − 6z − 8 = 0 C. 5x − y + 3z − 4 = 0 D. 5x + y − 3z − 4 = 0
( P ) qua hai điểm A ( 1,3,−2) ; B( 2,−1,4) và vuông góc với mặt phẳng
Câu 61: Cho mặt phẳng
( Q ) :3x − 4y + z + 1= 0. Chọn câu đúng?
r
P)
n = ( 20,17,8)
(
A.
có một vector pháp tuyến là
( P ) vuông góc với mặt phẳng ( R) : 3x − 4y + z − 1= 0
B.
www.thuvienhoclieu.com

Trang 7


www.thuvienhoclieu.com
r
P)
a = ( −1,4, −6)
(
C.
có một vector chỉ phương là:
D. Ba câu A, B và C đúng.
M ( 2, −4,1)
Câu 62: Cho mặt phẳng (P) qua điểm
và chắn trên ba trục tọa độ Ox, Oy, Oz theo ba đoạn
có số đo đại số a, b, c. Viết phương trình tổng quát của (P) khi a, b, c tạo thành một cấp số nhân có công
bội bằng 2.
4x + 2y − z − 1= 0
4x − 2y + z + 1= 0
A.
B.
16x + 4y − 4z − 1= 0
4x + 2y + z − 1= 0
C.
D.

M ( 2, −4,1)
Câu 63: Cho mặt phẳng (P) qua điểm
và chắn trên ba trục tọa độ Ox, Oy, Oz theo ba đoạn
có số đo đại số a, b, c. Viết phương trình tổng quát của (P) biết đoạn chắn trên Ox bằng ba lần các doạn
chắn trên Oy và Oz.
A. x − 3y − 3z + 7 = 0 B. x + 3y + 3z − 7 = 0 C. x + 3y + 3z + 7 = 0 D. 3x + y + z − 7 = 0

Câu 64: Cho hai điểm

A ( 2, −3,4) ; B( −1,4,3)

. Viết phương trình tổng quát của mặt phẳng (P) vuông
3
góc với AB, cắt ba trục tọa độ Ox, Oy, Oz tại M, N, E sao cho thể tích O.MNE bằng 14 đvtt.
3x − 7y + z ± 3 = 0 B. 3x − 7y + z + 3 = 0 C. 3x − 7y + z − 3 = 0 D. 3x − 7y + z ± 27 = 0
A.
Câu 65: Cho tứ giác ABCD có
của hình chóp
A. BCD.

A ( 0,1, −1) ; B( 1,1,2) ; C ( 1, −1,0) ; ( 0,0,1)

2
A. 2

3 2
B. 2

. Tính độ dài đường cao AH

C. 2 2

D. 3 2

A ( 0,1, −1) ; B( 1,1,2) ; C ( 1, −1,0) ; ( 0,0,1)
Câu 66: Cho tứ giác ABCD có
. Tính cosin của góc hợp bởi
( ABC ) và ( ABD ) .
hai mặt phẳng

2 154
A. 77

8 154
B. 77

C.

154
77

4 154
D. 77

A ( 0,1, −1) ; B( 1,1,2) ; C ( 1, −1,0) ; ( 0,0,1)
Câu 67: Cho tứ giác ABCD có
. Viết phương trình của mặt
phẳng (P) qua A, B và chia tứ diện thành hai khối ABCE và ABDE có tỉ số thể tích bằng 3.
15x − 4y − 5z − 1 = 0
15x + 4y − 5z − 1 = 0
A.
B.
15x + 4y − 5z + 1= 0
15x − 4y + 5z + 1= 0
C.
D.
A ( 0,1, −1) ; B( 1,1,2) ; C ( 1, −1,0) ; ( 0,0,1)
Câu 68: Cho tứ giác ABCD có
. Viết phương trình tổng quát
của mặt phẳng (Q) song song với mặt phẳng (BCD) và chia tứ diện thành hai khối AMNF và MNFBCD
1
có tỉ số thể tích bằng 27 .
y+ z− 4= 0
y − z − 1= 0
A. 3x − 3z − 4 = 0
B.
C.
D. 4x + 3z + 4 = 0
A ( 0,1, −1) ; B( 1,1,2) ; C ( 1, −1,0) ; ( 0,0,1)
Câu 69: Cho tứ giác ABCD có
. Viết phương trình tổng quát
( R) cứa AC và vuông góc với mặt phẳng (ABD).
của mặt phẳng
x− y+ z− 2= 0
x+ y+ z + 2 = 0
x+ y+ z = 0
x+ y− z = 0
A.
B.
C.
D.
A ( 0,1, −1) ; B( 1,1,2) ; C ( 1, −1,0) ; ( 0,0,1)
Câu 70: Cho tứ giác ABCD có
. Gọi H, I, K lần lượt là hình
chiếu vuông góc của B, C, D trên ba trục Ox, Oy, Oz. Viết phương trình tổng quát của mặt phẳng (HIK).

www.thuvienhoclieu.com

Trang 8


x − y + z + 1= 0
A.

www.thuvienhoclieu.com
x

y
+
z
− 1= 0
x + y + z − 1= 0
B.
C.

D.

x + y + z + 1= 0

( P ) :3x − 4y + 2z − 5 = 0 . Viết phương trình tổng quát của mặt phẳng (Q) đối
Câu 71: Cho mặt phẳng
xứng với (P) qua mặt phẳng (yOz)
3x + 4y − 2z + 5 = 0 B. 3x + 4y + 2z + 5 = 0 C. 3x − 4y − 2z − 5 = 0 D. 3x + 4y − 2z − 5 = 0
A.
( P ) : 3x − 4y + 2z − 5 = 0 . Viết phương trình tổng quát của mặt phẳng (R) đối
Câu 72: Cho mặt phẳng
A ( 3,−2,1)
xứng với (P) qua điểm
3x − 4y + 2z + 43 = 0
3x − 4y + 2z + 33 = 0
A.
B.
3x − 4y + 2z − 43 = 0
3x − 4y + 2z − 33 = 0
C.
D.
( P ) : 3x − 4y + 2z − 5 = 0 . Viết phương trình tổng quát của mặt phẳng ( α ) đối
Câu 73: Cho mặt phẳng
xứng của (P) qua trục y’Oy
3x + 4y + 2z − 5 = 0 B. 3x − 4y − 2z + 5 = 0 C. 3x + 4y − 2z + 5 = 0 D. 3x + 4y + 2z + 5 = 0
A.
( P ) :3x − 4y + 2z − 5 = 0 . Tìm tập hợp các điểm cách (P) một đoạn bằng
Câu 74: Cho mặt phẳng
3x − 4y + 2z − 34 = 0
A.
3x − 4y + 2z + 34 = 0
B.
3x − 4y + 2z − 34 = 0 hoặc 3x − 4y + 2z + 24 = 0 .
C.
D. 3x − 4y + 2z + 34 = 0; 3x − 4y + 2z − 24 = 0

29

Câu 75: Viết phương trình của mặt phẳng (P) cách gốc O một đoạn bằng 3 và các góc hợp bởi vector
60o , 45o , 60o .
pháp tuyến lần lượt với 3 trục là
2y z
x
+
+ − 3= 0
2
2
A. x + 2y + z + 6 = 0 B. x + 2y + z − 6 = 0 C. x + 2y + z + 3 = 0 D. 2
 1 1 2
H  ,− ,
2 2 2 ÷
÷
 và vuông góc với OH.
Câu 76: Viết phương trình của mặt phẳng (P) qua điểm 
x y
2z
x y
2z
− +
− 1= 0
− +
+ 1= 0
x

y
+
2
z

2
=
0
x

y
+
2
z
+
2
=
0
2
2
A.
B. 2 2
C.
D. 2 2

α , β , γ lần lượt là các góc tạo bởi vector
OH = p ):
pháp tuyến của (P) với ba trục Ox, Oy, Oz. Phương trình của (P) là (
Câu 77: Từ gốc O vẽ OH vuông góc với mặt phẳng (P); gọi
A.
C.

x cosα + y cos β + z cosγ − p = 0

x cosα + y cos β + z cosγ + p = 0

Câu 78: Cho điểm
(P ) .
A. 2 3

M ( 1, −4,−2)

và mặt phẳng

B. 4 3

B.
D.

x sinα + y sin β + z sin γ − p = 0

x sinα + y sin β + z sin γ + p = 0

( P ) : x + y + 5z − 14 = 0 . Tính khoảng cách từ
C. 6 3

M đến

D. 3 3

M ( 1, −4, −2)
( P ) : x + y + 5z − 14 = 0 . Tính tọa độ hình chiếu vuông
Câu 79: Cho điểm
và mặt phẳng
( P) .
góc H của M trên
( 2,3,−3)
( 2,−3,−3)
( 2,3, −3)
( 2,−3,3)
A.
B.
C.
D.
Câu 80: Viết phương trình tổng quát của mặt phẳng (P) song song với mặt phẳng
( Q ) : 2x − 4y + 4z + 3 = 0 và cách điểm A ( 2, −3,4) một khoảng bằng 3:

www.thuvienhoclieu.com

Trang 9


www.thuvienhoclieu.com
2
x

4
y
+
4
z

14
=
0
2x − 4y + 4z − 50 = 0
A.
B.
C. 2x − 4y + 4z − 14 = 0; 2x − 4y + 4z − 50 = 0 D. 2x − 4y + 4 + −14 = 0; 2x − 4y + 4z − 50 = 0

( Q ) : 3x − 2y − 6z + 5 = 0 một
Câu 81: Viết phương trình tổng quát của mặt phẳng (P) cách mặt phẳng
khoảng bằng 4:
3x − 2y − 6z − 23 = 0; 3x − 2y − 6z + 33 = 0
3x − 2y − 6z + 23 = 0; 3x − 2y − 6z + 33 = 0
A.
B.
3x − 2y − 6z − 23 = 0; 3x − 2y − 6z − 33 = 0
3x − 2y − 6z + 23 = 0; 3x − 2y − 6z − 33 = 0
C.
D.
M ( x, y, z)
Câu 82: Tìm tập hợp các điểm
cách đều hai mặt phẳng:
( P ) :2x + 4y − 4z + 3 = 0; ( Q ) : 2x − y + 2z + 6 = 0
A.

2x − 6y + 8z − 9 = 0; 6x + 2y − 15 = 0

B.

C. 2x + 6y + 8z − 9 = 0; 6x − 2y + 15 = 0
Câu 83: Tìm tập hợp các điểm

2x − 6y + 8z + 9 = 0; 6x + 2y − 15 = 0

D. 2x − 6y + 8z + 9 = 0; 6x + 2y + 15 = 0

M ( x, y, z)

có tỉ số các khoảng cách đến hai mặt phẳng
4
( P ) :6x + 3y − 2z − 1= 0; ( Q ) : 2x + 2y − z + 6 = 0 bằng 7 .
10x − y − 2z − 27 = 0; 26x − 17y − 10z + 21= 0
A.
10x + y − 2z − 27 = 0; 26x + 17y − 10z + 21 = 0
B.
4x − 5y − z − 45 = 0; 26x + 23y − 13z + 39 = 0
C.
10x + y − 2z − 21= 0; 26x + y − 2z − 27 = 0
D.

Câu 84: Cho mặt phẳng (P) di động chắn ba trục Ox, Oy, Oz theo ba đoạn OA = a, OB = b, OC = c
1 2 3
+ + =1
khác 0 sao cho a b c
. (P) đi qua điểm cố định nào sau đây?
 1 1
 1, 2 , 3 ÷

A. 

1 1 
 3 , 2 ,1÷

B. 

C.

( 1,2,3)


1 1
 −1, − 2 , − 3 ÷

D. 

( α ) : x − 2y + 3z − 2 = 0 và ( β ) : 2x − y + z + 3 = 0 . Gọi (D) là giao tuyến của
Câu 85: Cho hai mặt phẳng
( α ) và ( β ) . Viết phương trình tổng quát của mặt phẳng (P) chứa (D) và song song với z’Oz.
7x − 5y + 7 = 0
7x + 5y − 7 = 0
5x + y − 5 = 0
5x − y + 11= 0
A.
B.
C.
D.
( α ) : x − 2y + 3z − 2 = 0 và ( β ) : 2x − y + z + 3 = 0 . Gọi (D) là giao tuyến của
Câu 86: Cho hai mặt phẳng
( α ) và ( β ) . Mặt phẳng (Q) chứa (D) song song với y’Oy cắt x’Ox tại A có tọa độ là:
 8

− ,0,0÷


8,0,0
8,0,0
4,0,0
(
)
(
)
(
)

A.
B.
C.
D.  3
Câu 87: Cho điểm
qua (P):
( 5,5, −2)
A.

A ( −1,3,2)

B.

và mặt phẳng

( −5, −5,2)

(P ) : x + 2y − z + 5 = 0 . Tính tọa độ điểm B đối xứng với A
C.

( −2, −4,2)

D.

( 2,4, −2)

A ( m, m− 1, m) ; B ( 3m, m− 3, m− 2)
Câu 88: Cho hai điểm di động
. Tập hợp các trung điểm M của
đoạn thẳng AB là mặt phẳng:
x− y− z− 3= 0
x+ y+ z − 3= 0
x− y+ z + 3= 0
x+ y− z+ 3= 0
A.
B.
C.
D.
Câu 89: Với giá trị nào của m thì hai mặt phẳng sau song song:

www.thuvienhoclieu.com

Trang 10


www.thuvienhoclieu.com
( P ) :(m− 2)x − 3my + 6z − 6 = 0; ( Q ) :(m− 1)x + 2y + (3− m)z + 5 = 0
A. 2

B. 3

( β ) : 5 x + y − 2 z + 8 = 0 .Gọi ( α ) là mặt phẳng chứa điểm
( β ) . Phương trình mặt phẳng ( α ) :
M,song song với trục Ox và vuông góc vớimặt phẳng
Câu 90: Cho điểm

M ( 1, −4, −3 )

D. −1

C. 0
và mặt phẳng

A. 2 y − z + 11 = 0
B. 2 y + z + 11 = 0

C. y − 2 z + 11 = 0
D. y + 2 z + 11 = 0
Hãy chọn kết quả đúng .
Câu 91: Giá trị m thỏa mãn điều kiện nào để hai mặt phẳng

( P ) : mx + ( m− 2) y + 2( 1− m) z + 2 = 0; ( Q ) : ( m+ 2) x − 3y + ( 1− m) z − 3 = 0 cắt nhau?

A. m≠ 1
B. m≠ 1 và m≠ −4
C. m≠ −4
Câu 92: Với giá trị nào của m và n thì hai mặt phẳng sau song song:

D. m≠ 4

( P ) : x + my − z + 2 = 0; ( Q ) : 2x + y + 4nz − 3 = 0
1
1
m= ; n =
2
2
A.
Câu 93: Hai mặt phẳng
o
A. 45

1
1
m= − ; n =
2
2
B.

C.

m=

( P ) :4x − 2y + 4z + 5 = 0 và ( Q ) : x
o

1
1
; n= −
4
4
3− y 3− 2= 0

o

B. 30

D.

C. 60

m=

1
1
; n= −
2
2

tạo với nhau một góc bằng:
o
D. 90

( P ) : mx + ( m− 1) y − z − 3 = 0 và ( Q ) : ( m− 1) x + my + z + 5 = 0 . Với giá trị
Câu 94: Cho hai mặt phẳng
nào của m thì (P) và (Q) vuông góc?
1
1± 3
A. 1+ 3
B. 1− 3
C. 2
D. 1± 3

(

Câu 95: Cho hai mặt phẳng

)

( P ) : mx + ( m− 1) y − z − 3 = 0 và ( Q ) : ( m− 1) x + my + z + 5 = 0 . Với giá trị

o
nào của m thì (P) và (Q) tạo với nhau một góc 60 ?
A. -1
B. 2
C. 1 và 2

Câu 96: Hai mặt phẳng (P) và (Q) cắt ba trục tọa độ lần lượt tại
E ( 2,0,0) ; F ( 0, −4,0) ; G ( 0,0, −2)
. Tính góc giữa hai (P) và (Q)
o
o
o
A. 90
B. 60
C. 45

D. -1 và 2
A ( 4,0,0) ; B( 0, −2,0) ; C ( 0,0,2)



o

Câu 97: Với giá trị nào của m và n thì ba mặt phẳng sau cắt nhau tại điểm

D. 30
A ( 1,2, −2)

:

( P ) : mx + 2y + ( n + 1) z − 3 = 0; ( Q ) : x + ( m+ 1) y − nz + 4 = 0; ( R) : 4nx − my + 2mz − 6 = 0
A.

m= −2; n =

3
2

B.

m= 2; n = −

3
2

C.

m= −2; n = −

3
2

3
m = − ; n = −2
2
D.

2
2
M ( x, y, z)
A ( 2, −1,3) B( −4,3,1)
Câu 98: Tìm tập hợp các điểm
sao cho MA − MB = 4 với
;
A. 3x + 2y − z − 4 = 0 B. 3x − 2y + z + 4 = 0 C. 3x − 2y + z + 5 = 0 D. 3x + 2y + z − 5 = 0
Câu 99: Tìm tập hợp các điểm M cách đều hai mặt phẳng:

( P ) :2x − y + 2z + 9 = 0; ( Q ) :4x − 2y + 4z − 3 = 0
A.

2x − y + 2z + 2 = 0

B.

2x − y + 2z − 2 = 0

www.thuvienhoclieu.com

Trang 11


www.thuvienhoclieu.com
6
x

3
y
+
6
z

5
=
0
8x − 4y + 8z + 15 = 0
C.
D.
Câu 100: Viết phương trình tổng quát của mặt phẳng (P) cắt hai trục y’Oy và z’Oz tại
o
A ( 0, −1,0) ; B( 0,0,1)
và tạo với mặt phẳng (yOz) một góc 45 .
A. 2x − y + z − 1 = 0
B. 2x + y − z + 1 = 0
C.

2x + y − z + 1= 0;

2x − y + z + 1= 0

D.

2x + y − z + 1= 0;

2x − y + z − 1 = 0

M ( −3, 2, −1)
( α ) : x + 3 y − 5 z + 3 = 0, ( β ) : 2 x − y − 2 z − 5 = 0. Gọi
Câu 101: Cho điểm
và hai mặt phẳng
( P ) là mặt phẳng chứa điểm M , vuông góc với cả hai mặt phẳng ( α ) và ( β ) . Phương trình mặt phẳng
( P) :
A. x + 8 y − 7 z + 12 = 0 B. x − 8 y + 7 z + 12 = 0 C. x − 8 y − 7 z + 12 = 0 D. x + 8 y + 7 z + 12 = 0
Câu 102: Cho hai mặt phẳng

( α ) : 3x + 2 y + 5 z + 6 = 0, ( β ) : 4 x + 3 y − 2 z − 3 = 0

.

M ( 14,18, 2 ) , M 2 ( 14, −18, −2 ) , M 3 ( −5,8, −1) , M 4 ( −5, −8,1)
Trong 4 điểm sau đây: 1
, điểm nào nằm
( α ) và ( β ) :
trên giao tuyến của
A. Chỉ M 1
B. M 2 , M 3
C. Chỉ M 4
D. M 1. , M 4
Câu 103: Tính khoảng cách gần đúng nhất giữa hai mặt phẳng song song:

( P ) :2x − y + z − 3 = 0; ( Q ) :4x − 2y + 2z + 7 = 0
A. 2,7

B. 2,6

C. 2,8

D. 3

A ( 3,0,4) ; B( −3,0,4)
Câu 104: Cho mặt phẳng (P) qua hai điểm
và hợp với mặt phẳng (xOy) một góc
o
30 và cắt y’Oy tại C. Tính khoảng cách từ O đến (P):

A. 4 3

B.

3

C. 3 3

D. 2 3

A ( 3,0,4) ; B( −3,0,4)
Câu 105: Cho mặt phẳng (P) qua hai điểm
và hợp với mặt phẳng (xOy) một góc
o
30 và cắt y’Oy tại C. Viết phương trình tổng quát của mặt phẳng (P).

A. y + 3z + 4 3 = 0
C. y ± 3z ± 4 3 = 0

B. y + 3z − 4 3 = 0
D. x − y − 3z − 4 3 = 0

M ( 3,2, −1)
Câu 106: Viết phương trình tổng quát của mặt phẳng (P) qua
và chắn ba trục Ox, Oy, Oz ba
đoạn 4a, 3a, 2a, a ≠ 0.
A. 3x − 4y + 6z − 11= 0
B. 3x + 4y + 6z − 11= 0

C.

3x + 4y + 6z − 1= 0

D.

3x − 3y + 6z + 11 = 0

( P ) : x − 5 y + 2 z − 4 = 0, ( Q ) : 2 x + y − z + 9 = 0 . Gọi ϕ là góc tạo bởi hai
Câu 107: Cho hai mặt phẳng
( P ) và ( Q ) . cos ϕ là số nào?
mặt phẳng
3
5
6
5
A. 5
B. 3
C. 5
D. 6
o
Câu 108: Với giá trị nào của m thì hai mặt phẳng sau tạo với nhau một góc 60 :

( P ) : ( m− 1) x − my + 2mz + 3− 2m= 0; ( Q ) :2mx + ( 1− m) y + mz + 5m+ 3 = 0
1± 2
A. 2

1± 2
4
B.

C. 1± 2
www.thuvienhoclieu.com

D. 2 ± 2 2
Trang 12


www.thuvienhoclieu.com
( P ) : 3x − 4y + 2z + 15 = 0 và tam giác ABC với
Câu 109: Một mặt phẳng
A ( 1,3,5) ; B( −2,1,4) ; C ( −3,2, −1)

( P ) cắt cạnh AB
( P ) cắt cạnh AC
II.
( P ) cắt cạnh BC
III.

. Câu nào sau đây sai?

I.

( P ) song song với AB
IV.
A. Chỉ I
B. Chỉ II

C. Chỉ I và IV

D. Chỉ III và IV

( P ) :2x + 2y − 6z + 5 = 0; ( Q ) :3x + 4y + 2z − 6 = 0 và ( R) qua hai điểm
Câu 110: Cho ba mặt phẳng
A ( 1,3, −1) ; B( −2,4, −1)
( R) vuông góc với ( P ) . Câu nào sau đây đúng?

r
R)
a = ( −1,−1,3)
(
A.
có một vector chỉ phương là
r
R)
n = ( 1,2,1)
(
B.
có một vector pháp là
( R) vuông góc với giao tuyến ( D ) của ( P ) và ( Q )
C.
D. Hai câu A và B.
-----------------------------------------------

ĐÁP ÁN VÀ LỜI GIẢI
Câu 1: A đúng, B và C sai. Chọn A.
Câu 2: A và B đúng, C sai, vì một mặt phẳng có vô số cặp vecto chỉ phương
Chọn D.
Câu 3: A, B sai, C đúng
Chọn D.
Câu 4: B đúng
Chọn B.
Câu 5: A, B, và C đúng.
Chọn D.
Câu 6: A sai và có thể (P) và (Q) trùng nhau, B sai, vì một mặt phẳng có vô số pháp vecto. C đúng.
Câu 7: A và B đúng.
Chọn D.
Câu 8:
r
r uu
r
r
α ) n =  a, b  = ( −1, −4, −7 )
n = ( 1, 4, 7 )
(
Vectơ pháp tuyến của

có thể thay thế bởi

( α ) có dạng x + 4 y + 7 z + D = 0.
Phương trình
B ∈ ( α ) ⇔ 3 + 16 − 35 + D = 0 ⇔ D = 16
(α) :

x + 4 y + 7 z + 16 = 0 . Vậy chọn C.

Câu 9:
uuur
uuur
uuuruuur
AB = ( 1, −1, −3) , AC = ( −1,1, 0 ) ;  AB, AC  = ( 3,3, 0 ) :

( ABC ) có dạng x + y + D = 0
trình
Qua A ⇔ 3 − 1 + D = 0 ⇔ D = −2
( ABC ) : x + y − 2 = 0 . Vậy chọn A.
Phương trình
Câu 10: B đúng.

Chọn

r
n = ( 1,1,0 )

www.thuvienhoclieu.com

làm vectơ pháp tuyến :phương

Trang 13


www.thuvienhoclieu.com
Chọn B.
Câu 11: C đúng.
Chọn C.
Câu 12: A đúng.
Chọn A.
Câu 13: B và C sai.
Chọn D.
y
( P ) : xa + b + zc = 1⇔ ( P ) : bcx + cay + abz − abc = 0
Câu 14:
Chọn B.
uu
r
uu
r2
2
2
2
n0 = ( A0 , B0 ,C0 )
P

A
+
B
+
C
=
n
= 1⇒
( )
0
0
0
0
Câu 15: Gọi
là pháp vecto đơn vị của
Phương

( P ) : A0x + B0y + C0z + D0 = 0, A02 + B02 + C02 = 1.
trình pháp dạng của
Chọn C.
Câu 16:
uuur
uuuruu
r
r
r
AB = ( 1, 2, −1) ;  AB, a  = n = ( −9,1, −7 )
n = ( 9, −1, 7 )
.Chọn
làm vectơ pháp tuyến . Phương trình mặt
phẳng phải tìm có dạng : 9 x − y + 7 z + D = 0
Qua A nên 9.2 − (−1) + 7.3 + D = 0 ⇔ D = −40
Phương trình cần tìm là: 9 x − y + 7 z − 40 = 0 .

Vậy chọn B.
Câu 17:
uuur
r
AB = ( −1, 2, −2 ) :
i = ( 1, 0, 0 )
vectơ chỉ phương của trục Ox:
.
uuur r
r
 AB, i  = ( 0, −2, −2 )
n = ( 0,1,1)


:Chọn
làm vectơ pháp tuyến thì phương trình mặt phẳng cần tìm có dạng
y + z + D = 0, qua A nên:

−1 + 1 + D = 0 ⇔ D = 0

Vậy chọn C.
uuuu
r
OH = ( 2;2;2)
Câu 18:
suy ra phương trình mặt phẳng

( P ) : 2( x − 2) + 2( y − 2) + 2( z − 2) = 0 ⇔ ( P ) : x + y + z = 6.

Chọn A.
Câu 19:
uuur
uuur
uuur uuur
AC = ( −2, 6, −4 ) ; BD = ( 6,3, 2 ) ;  AC , BD  = ( 24, −20, −42 ) .

Có thể chọn

r
n = ( 12, −10, −21)

làm vectơ

pháp tuyến cho mặt phẳng .

Phương trình mặt phẳng này có dạng 12 x − 10 y − 21z + D = 0 .Điểm A thuộc mặt phẳng nên :
12.3 − 10(−2) − 21.1 + D = 0 ⇔ D = −35
Phương trình cần tìm : 12 x − 10 y − 21z − 35 = 0 , Vậy chọn C.
Câu 20:
uuur
BC = ( −1, 4, −2 ) .

Chọn

r
n = ( 1, −4, 2 )

làm vectơ pháp tuyến .

Phương trình mặt phẳng chứa A và vuông góc với BC có dạng x − 4 y + 2 z + D = 0
Chứa A nên 4 − 4.3 + 2.2 + D = 0 ⇔ D = 4
Vậy: x − 4 y + 2 z + 4 = 0 . Vậy chọn C.
Câu 21:
Gọi I là trung điểm của AB:

I ( 2, −1,5 )

.
www.thuvienhoclieu.com

Trang 14


uuur
AB = ( 2, 6, 2 )

.Chọn

r
n = ( 1,3,1)

www.thuvienhoclieu.com
làm vectơ pháp tuyến .

Phương trình mặt phẳng trung trực của đoạn AB có dạng x + 3 y + z + D = 0
I thuộc mặt phẳng này: 2 + 3(−1) + 5 + D = 0 ⇔ D = 4 .

Phương trình cần tìm : x + 3 y + z − 4 = 0 . Vậy chọn D.
Câu 22:
r
r
a = ( 1, 2, −1) ; b = ( 2, −1,1)
là hai vectơ pháp tuyến của hai mặt phẳng cho trước .
r
r uu
r
n =  a, b  = ( 1, −3, −5 )
Chọn
làm vectơ pháp tuyến ,ta có mặt phẳng có dạng x − 3 y − 5 z + D = 0 .
Qua M nên: 3 − 3.0 − 5.(−1) + D = 0 ⇔ D = −8

Phương trình mặt phẳng cần tìm là: x − 3 y − 5 z − 8 = 0
Vậy chọn A.
Câu 23:
uuur
r
AB = ( −4, 2, −2 ) ;
vectơ pháp tuyến n của mặt phẳng 3 x + 2 y − z + 5 = 0 :
r
uuur r
r
r
n = ( 3, 2, −1) ;  AB, n  = n = ( 2, −10, −14 )
b = ( 1, −5, −7 )
.chọn
làm vectơ pháp tuyến .có mặt phẳng
x − 5y − 7z + D = 0
A thuộc mặt phẳng này: 2 − 5.9 − 1) − 7.1 + D = 0 ⇔ D = 0
Vậy x − 5 y − 7 z = 0 là mặt phẳng cần tìm . Vậy chọn C.
Câu 24:
( α ) thuộc chùm mặt phẳng 2 x − y + 3 z + 4 + m ( x + 3 y − 2 z + 7 ) = 0 nên có dạng
( m + 2 ) x + ( 3m − 1) y − ( 2m − 3) z + 7m + 4 = 0 ( *)

⇔ ( m + 2 ) . ( −1) + ( 3m − 1) .2 − ( 2m − 3) .4 + 7 m + 4 = 0
M ∈ ( α ) ⇔ 4m + 12 = 0 ⇔ m = −3
( *) : x + 10 y − 9 z + 17 = 0 . Vậy chọn A.
Thế vào
Câu 25:
( α ) về dạng tổng quát .
Đưa phương trình
( α ) cho biết A ( −1, 2,1) ∈ ( α ) và cặp vectơ chỉ phương
Phương trình tham số của
r
r
a = ( 2, −1,3) ; b = ( −3,1, −2 )
.
r r
r
 a, b  = ( −1, −5, −1)
n = ( 1,5,1)
( α ) thì phương trình tổng quát của ( α )
 
.Chọn
làm vectơ pháp tuyến cho
có dạng x + 5 y + z + D = 0

A ∈ ( α ) ⇔ −1 + 5.2 + 1 + D = 0 ⇔ D = −10

.

( α ) : x + 5 y + z − 10 = 0
m ( x + 5 y + z − 10 ) + ( 2 x + y − z + 1) = 0
Xét chùm mặt phẳng :
⇔ ( m + 2 ) x + ( 5m + 1) y + ( m − 1) z − 10m + 1 = 0 ( *)
Phương trình

Điểm

M ∈ ( P ) ⇔ ( m + 2 ) .3 + ( 5m + 1) . ( −2 ) + m − 1 − 10m + 1 = 0 ⇔ m =

Thế vào

1
4

( *) : 

1

5 
 1  10
+ 2 ÷ x +  + 1 ÷ y +  − 1 ÷z − + 1 = 0
4
4

4 
4 
⇔ 9 x + 9 y − 3z − 6 = 0 ⇔ 3x + 3 y − z − 2 = 0

www.thuvienhoclieu.com

Trang 15


www.thuvienhoclieu.com
Vậy chọn A.
Câu 26:
r
( α ) có vectơ pháp tuyến a = ( 1,5, −2 )
r
( β ) có vectơ pháp tuyến b = ( 2, −1,1)
1.2 + 5 ( −1) + ( −2 ) .1
5
cos ϕ =
=
2
2
6
12 + 52 + ( −2 ) . 22 + ( −1) + 12
Vậy chọn B.
Câu 27:
Tọa độ giao điểm của ba mặt phẳng là nghiệm của hệ phương trình :
 x + 2 y − z − 6 = 0 ( 1)

 2 x − y + 3 z + 13 = 0 ( 2 )

3 x − 2 y + 3 z + 16 = 0 ( 3)
Giải (1),(2) tính x,y theo z được x = − z − 4; y = z + 5. Thế vào phương trình (3) được z = −3, từ đó có
x = −1, y = 2

A ( −1, 2, −3)
Vậy
. Vậy chọn D
Câu 28:
Tọa độ của A là nghiệm của hệ phương trình :

Giải (1),(2) tính x,y theo z được
x = 1, y = 2

x=

2 x + y − z − 1 = 0 ( 1)

3 x − y − z + 2 = 0 ( 2 )

4 x − 2 y + z − 3 = 0 ( 3 )

2z −1
z+7
;y =
.
5
5 Thế vào phương trình (3) được z = 3, từ đó có

A ( 1, 2,3)
Vậy
. Vậy chọn C.
Câu 29:
Tọa độ của A là nghiệm của hệ phương trình :

 x + 2 y + 4 z − 2 = 0 ( 1)

2 x + 3 y − 2 z + 3 = 0 ( 2 )

 2 x − y + 4 z + 8 = 0 ( 3)

1
z= ,
2 từ đó
Giải (1),(2) tính x,y theo z được x = 16 z − 12; y = −10 z + 7. Thế vào phương trình (3) được
có x = −4, y = 2

1

A  −4, 2, ÷
2
Vậy 
Vậy chọn C.
Câu 30:
( P ) thuộc chùm mặt phẳng ( α ) , ( β ) nên phương trình có dạng
Mặt phẳng
( m + 3) x − 2 y + ( 1 − 2m ) z − 3 = 0 vì vuông góc với ( γ ) nên:
( m + 3) .1 − 2.( −2 ) + 1 − 2m = 0 ⇔ m = 8

Phương trình

( P)

là : 11x − 2 y − 15 z − 3 = 0
www.thuvienhoclieu.com

Trang 16


www.thuvienhoclieu.com
Vậy chọn B.
Câu 31:
r
r r
a = ( 3,1, −1) 


a
r
r
  , b  = ( −1, −4, −7 )
b = ( 1, −2,1) 
n = ( 1, 4, 7 )
cùng phương với vectơ
r
n = ( 1, 4, 7 )
( α ) thì phương trình tổng quát của ( α ) có dạng :
Chọn
àm vectơ pháp tuyến của
x + 4 y + 7z + D = 0
Điểm

M ( 3, 4, −5 ) ∈ ( α ) ⇔ 3 + 16 − 25 + D = 0 ⇔ D = 16

( α ) : x − 4 y + 7 z + 16 = 0
Phương trình
Vậy chọn B.
Câu 32:
uuur
r
A ( 1, −4,5 ) ; B ( −2,3, −4 ) ⇒ AB = ( −3, 7, −9 ) ; a = ( 2, −3, −1)
r
uuu
r
AB và a sẽ là cặp vectơ chỉ phương của ( β )
uuu
r r
 AB, a  = ( −34, −21, −5 )


r
n = ( 34, 21,5 )
(β)
Chọn
làm vectơ pháp tuyến của
( β ) có dạng 34 x + 21y + 5 z + D = 0
Phương trình mặt phẳng
∈ ( β ) ⇔ 34 − 84 + 25 + D = 0 ⇔ D = 25
Điểm A
( β ) : 34 x + 21 y + 5 z + 25 = 0
Phương trình
Vậy chọn C.
Câu 33:
C ( −1, 4, −2 ) ; D ( 2, −5,1)
uuur
r
⇒ CD = ( 3, −9,3)
a = ( 1, −3,1)
cùng phương với vectơ
r
k = ( 0, 0,1)
Trục Oz có vectơ chỉ phương
r r
r
 a, k  = ( −3, −1, 0 )
n = ( 3,1, 0 )
 
cùng phương với vectơ
r
n = ( 3,1, 0 )
Chọn
làm vectơ pháp tuyến cho mặt phẳng chứa CD và song song với trục Oz.
Phương trình mặt phẳng này có dạng : 3 x + y + D = 0
Mặt phẳng qua C ⇔ −3 + 4 + D = 0 ⇔ D = −1
Phương trình mặt phẳng cần tìm : 3x + y − 1 = 0
Vậy chọn B.

uuur

( P ) : AB = ( −4,6,1)
Câu 34: Pháp vecto của
⇒ ( P ) : ( x − 2) ( −4) + ( y + 3) 6 + ( z − 1) = 0 ⇔ 4x − 6y − z − 25 = 0
Chọn D.

r
r r

P
:
n
=
a
, b = 2, −12,9)
( )
  (
Câu 35: Pháp vecto của
⇒ ( P ) : ( x − 1) 2 + ( y + 2) ( −12) + ( z − 3) 9 = 0 ⇔ 2x − 12y + 9z − 53 = 0
Chọn D.

uuur
r r uuur
AB = ( −2, −5, −2) ⇒ n =  a, AB = 2( 13, −2, −8)


Câu 36: Pháp vecto của (P):
0.
⇒ ( P ) : ( x + 2) 13+ ( y − 3) ( −2) + ( z − 5) ( −8) = 0 ⇔ 13x − 2y − 8z + 72 = 0
www.thuvienhoclieu.com

Trang 17


www.thuvienhoclieu.com
Chọn C.

uuur

uuur

( P ) : AB = ( 2, −3, −1) ; AC = ( −2,2,2)
Câu 37: Cặp vecto chỉ phương
r của
( P ) : n = ( −4,−2, −2) = −2( 2,1,1)
Pháp vecto của
⇒ ( P ) : ( x − 2) 2 + y.1+ ( z − 3) .1 = 0 ⇔ 2x + y + z − 7 = 0
Chọn A

I ( 2, −1,4)
Câu 38: Trung điểm I của đoạn
uuur AB:
( P ) : AB = 2( 1,−5,1)
Pháp vecto của
⇒ ( P ) : ( x − 2) 1+ ( y + 1) ( −5) + ( z − 4) .1 = 0 ⇔ x − 5y + z − 11= 0

Chọn D.
( P ) : 2x + 5y − 3z + D = 0 qua M ( −2,1,3) ⇒ D = 8
Câu 39:
⇒ ( P ) :2x + 5y − 3z + 8 = 0
Chọn D.

uu
r
e2 = ( 0,1,0)
Câu 40:
là:
uuu
r
r
uu
r uuu
r
EF = ( −2,5,2) ⇒ n =  e2 , EF  = 2( 1,0,1)


Vecto chỉ phương thứ hai
⇒ ( P ) : ( x − 3) .1+ ( y + 2) .0 + ( z − 4) .1 ⇔ x + z − 7 = 0

( P ) / / y'Oy ⇒ ecto chỉ phương của ( P )

Chọn B.

uuur

( P ) ⊥ ( ABC ) dọc theo đường cao AH ⇒ ( P ) ⊥ BC = ( −3,3,3)
Câu 41:
⇒ ( P ) : ( x − 1) ( −3) + ( y + 2) 3+ ( z − 6) 3 = 0 ⇔ x − y − z + 3 = 0
Chọn D.
Câu 42:
A ( 2,1, −1) , B ( 0, −1,3) , C ( 1, 2,1)
uuur
r
AC = ( −1,1, 2 )
n = ( 1, −1, −2 )
cùng phương với
r
Chọn n làm vectơ pháp tuyến .
Phương trình mặt phẳng cần tìm có dạng : x − y − 2 z + D = 0
Mặt phẳng qua B ⇔ 0 − (−1) − 2.3 + D = 0 ⇔ D = 5
Phương trình mặt phẳng chứa B và vuông góc với AC:
x − y − 2z + 5 = 0
Vậy chọn D.
r
n = 12( 3,1,2)
R)
(
Câu 43: Một vecto chỉ phương của

2
2
AB = 75 ⇒ AB = 5 3; AC = 108 ⇒ AC = 6 3

6( 2 − x) = 5( −1− x)
 x = 17
uur
uuu
r


6FB = 5FC ⇔ 6( 5− y) = 5( 8 − y) ⇒ F  y = −10


 z = −14
6( 1− z) = 5( 4− z)
uuur
AF = 4( 4, −2, −5)
Vecto chỉ phương thứ hai
uu
r
r uuur

N
=
n
, AF  = −
1,23,−10
( R) là

 
Pháp vecto của

⇒ ( R ) : ( x − 1) ( −1) + ( y + 2) 23+ ( z − 6) ( −10) = 0 ⇔ x − 23y + 10z − 108 = 0

www.thuvienhoclieu.com

Trang 18


www.thuvienhoclieu.com
Chọn A.

r

ur

( P ) ⊥ x'Ox tại A ( −3,0,0) ⇒ n = e = ( 1,0,0)
Câu 44:
A ( −3,0,0) ∈ ( P ) ⇒ ( P ) : ( x + 3) .1+ y.0 + z.0 = 0 ⇔ x + 3 = 0
1

Chọn B.
Câu 45:
A ( 5,1,3) , B ( 1, 6, 2 ) , C ( 5, 0, 4 ) , D ( 4, 0, 6 )
uuur
uuur
BC = ( 4, −6, 2 ) ; AD = ( −1, −1,3 )
uuur uuur
r
 BC , AD  = ( −16, −14, −10 )
n
= ( 8, 7,5 )


cùng phương với
r
Chọn n làm vectơ pháp tuyến cho mặt phẳng chứa BC và song song với AD.
( P ) có dạng : 8 x + 7 y + 5 z + D = 0
Phương trình
B ∈ ( P ) ⇔ 8 + 42 + 10 + D = 0 ⇔ D = −60
Điểm
( P ) : 8 x + 7 y + 5 z − 60 = 0
Phương trình
Vậy chọn B.
uuuur
uur
P ) : MN = ( 1,2, −5) ; nQ = ( 3,4, −2)
(
Câu 46: Cặp vecto chỉ phương của
r
uuuur uur
P ) : n =  MN ,nQ  = ( 16, −13, −2)
(


⇒ Pháp vecto của
⇒ ( P ) : ( x − 2) 16 + ( y + 4) ( −13) + ( z − 1) ( −2) = 0 ⇔ 16x − 13y − 2z − 82 = 0
Chọn C

r

r

( P ) : a = ( 2,−3,5) ; b = ( 1,4,2)
Câu 47: Cặp vecto chỉ phương của
r r r
P
:
n
( ) =  a,b = ( −14,9,11)
Pháp vecto của
⇒ ( P ) : ( x + 4) ( −14) + ( y − 1) 9 + ( z + 2) 11 = 0 ⇔ 14x − 9y − 11z + 43 = 0
Chọn D.
Câu 48:
( P ) : x + 2y − 4z − 1+ m( 2x − y + 3z + 5) = 0, m∈ ¡
A ( 3, −2,1) ∈ ( P ) ⇒ 16m− 6 = 0 ⇔ m=
⇒ ( P ) : x + 2y − 4z − 1+
Chọn B.

3
( 2x − y + 3z) + 5 = 0 ⇔ 14x + 13y − 23z + 7 = 0
8

( Q ) : ax + by + cz + d = 0 và ( R) : a x + b y + c z + d = 0 sẽ
ax + by + cz + d + m( a x + b y + c z + d ) = 0
có dạng
với m∈ ¡
Chú ý: mặt phẳng

( P)

3
8

1

chứa giao tuyến của
1

Câu 49:

1

1

1

1

1

1

uu
r

( P ) : e = ( 0,0,1)
Một
uuur vecto chỉ phương
uuur của
n( ) = ( 2,3, −15) ; n( ) = ( 4, −1,2) ⇒
Vecto chỉ phương thứ hai.
3

S

T

r uu
r uu
r
b = ns ,nr  = ( −21, −66, −16)


r
uu
r r
P ) : n =  e3 ,b = 3( 22, −7,0)
(


Pháp vecto của

www.thuvienhoclieu.com

Trang 19


www.thuvienhoclieu.com

3
2x + 3y = −3  x = 4
⇒
⇔
2x − y = 3
y = − 3

2
Cho z = 0

3

3
⇒ ( P ) :  x − ÷22 +  y + ÷( −7) + ( z − 0) .0 = 0
4
2



⇔ ( P ) : 22x − 7y − 27 = 0

Chọn D.
Câu 50:

uuu
r
uuuu
r
Oy
β
⇒ cos2 60o + cos2 β + cos2 60o = 1
OH
Gọi là góc hợp bởi

1 1
2
⇒ cos2 β = 1− = ⇒ cos β = ±
2 2
2
uuuu
r
H 2, ± 2,2 ⇒ OH = 2, ± 2,2
Tọa độ
⇒ ( P ) : x ± 2y = z − 8 = 0

(

)

(

Chọn A.
Câu 51:

)

ur

uuur

( Q ) : e = ( 1,0,0) ,CH = ( 2, ±
Cặp vecto chỉ phương của
1

r

ur uuuu
r

( Q ) : n = e ,OH  = 2( 0, −1, ±
Pháp vecto của
1

(

)

(

2

)

)

2,2

)

⇒ ( Q ) : ( x − 2) .0 + y m2 2 ( −1) + ( z − 2) ± 2 = 0 ⇔ y m 2z = 0

Chọn B.
Câu 52:
A ( −2,3, −1) , B ( 1, −2, −3) ( β ) : 3 x − 2 y + z + 9 = 0.
;
uuu
r
r
AB = ( 3, −5, −2 ) ( β )
n = ( 3, −2,1)
;
có vectơ pháp tuyến
uuur r
ur
 AB, n  = ( −9, −9, 9 )
p = ( 1,1, −1)


cùng phương với vectơ
ur
(α) .
Chọn p làm vectơ pháp tuyến cho mặt phẳng

( α ) có dạng : x + y − z + D = 0
Phương trình mặt phẳng
A ∈ ( α ) ⇔ −2 + 3 + 1 + D = 0 ⇔ D = −2
(α ) : x + y − z −2 = 0

Mặt phẳng
Vậy chọn A.
Câu 53:

r
uuur uuur
n =  AB, AC  = −2( 4,5, −1)


Vecto pháp tuyến
N ( 1, −2,3) ∈ ( P ) ⇒ ( P ) : ( x − 1) 4 + ( y + 2) 5+ ( z − 3) ( −1) = 0
⇒ ( P ) : 4x + 5y − z + 9 = 0

Chọn D.

uuuur 1 uuur uuur
Q
:
( ) AM = 2 AB + AC = ( 3,−2,2)
Câu 54: Pháp vecto của
uuur
uuuur
 2 2
3AG = 2AM ⇒ G  1, , − ÷
 3 3
Tọa độ trọng tâm G:

(

)

www.thuvienhoclieu.com

Trang 20


www.thuvienhoclieu.com

2 
2
⇒ 3( x − 1) − 2 y − ÷+ 2 z + ÷ = 0
3 
3


⇒ ( Q ) :9x − 6y + 6z − 1 = 0
Chọn A.
Câu 55:

uuur

uuur

( P ) : AB = ( 4,2,2) ;CD = ( 4,−2,−8)
. Cặp vecto chỉ phương của
r
uuur uuur
P ) : n =  AB,CD  = −4( 3, −10,4)
(


Pháp vecto của
A ( −3,1,2) ∈ ( P ) ⇒ ( P ) : ( x + 3) 3+ ( y − 1) ( −10) + ( z − 2) 4 = 0
⇒ ( P ) : 3x − 10y + 4z + 11 = 0

Chọn D.
Câu 56:
M ( −1,2,3) ; N ( −4,4,4) ; E ( −2,3,0)
uuuur
uuuu
r
MNE
:
MN
=

3,2,1
;
ME
= ( −1,1, −3)
(
)
(
)
Cặp vecto chỉ phương của
r
uuuur uuuu
r
MNE) : n =  MN , ME = ( −7, −10, −1)
(


Pháp vecto của

M ∈ ( MNE ) ⇒ ( MNE ) : ( x + 1) ( −7) + ( y − 2) ( −10) + ( z − 3) ( −1) = 0

⇒ ( MNE ) :7x + 10y + z − 16 = 0

Chọn C.
Câu 57:
( P ) : 2x − y + z + 2+ m( x + y − z − 3) = 0, m∈ ¡

⇔ ( P ) : ( m+ 2) x + ( m− 1) y + ( 1− m) z + 2− 3m= 0
r
uu
r
P
:
n
=
m
+
2,
m

1,1

m

n
( ) (
) s = ( 1,−3,1)
Pháp vecto của
⇒ ( m+ 2) 1+ ( m− 1) ( −3) + ( 1− m) 1= 0 ⇔ m= 2
⇒ ( P ) :4x + y − z − 4 = 0

Chọn D.
Câu 58:
 2x − y + 3z = 5
( 1)

3x + 5z = −4
( 2) ⇒ x + 7z = 4
 x + y + 2z = −9

( 3) 
 x + 2y − 3z = −22
⇒ z = 1; x = −3; y = −8 ⇒ A ( −3, −8,1)
Chọn B.
Câu 59:
r
n = ( 6,12, −9) = 3( 2,4, −2) ⇒

A đúng
2.3+ 4.0 − 3( −2) − 12 = 0 ⇒ ( P )
M ( 3,0, −2) ⇒
qua
B đúng
A ( 6,0,0) ; B( 3,0,0) ;C ( 0,0, −4)
(P) cắt ba trục tọa độ tại
uuur
uuur
P
:
AB
=

3
2,

1,0
,
AC = −2( 3,0,2)
(
)
(
)
⇒ Một cặp vecto chỉ phương của
Chọn D.
Câu 60:
Ta có:
www.thuvienhoclieu.com

Trang 21


www.thuvienhoclieu.com
( R) : 2x = 3y − 2z + 4 + m( 2x − y + 2z − 3) = 0
⇒ M ( 1,2,0) ∈ ( Q ) ⇒ −3m+ 12 = 0 ⇔ m= 4
⇒ ( R ) :10x − y + 6z − 8 = 0

Chọn A.
Câu 61:

uuur
uur
AB = ( 1, −4,6) ; nQ = ( 3, −4,1)
(P) có cặp vecto chỉ phương là:
r
uuur uur
P ) : n =  AB,nQ  = ( 20,17,8)
(


Một vecto pháp tuyến của uur
( R) là: nR = ( 3, −4,1)
Mộtr pháp
uur vecto của
⇒ n.nR = 60 − 68 + 8 = 0 ⇒ ( P ) ⊥ ( R)
rr
r
n.a= −20 + 68 − 28 = 0 ⇒ a là một vecto chỉ phương của (P)
Chọn D.
Câu 62:
a, b,c là cấp số nhân công bội q= 2 ⇒ a, b = 2a; c = 4a; a ≠ 0
y

( P ) : xa + b + cz = 1

Phương trình của
x y z
⇔ + +
= 1 ⇔ 4x + 2y + z − 4a = 0
a 2a 4a

1

( P ) qua M ( 2, −4,1) ⇒ 8− 8+ 1− 4a = 0 ⇔ a = 4
⇒ ( P ) : 4x + 2y + z − 1 = 0
Chọn D
Câu 63:

b=

a
a
x 3y 3z
,c = ⇒ ( P ) : +
+
=1
3
3
a a a

Ta có:
⇔ x + 3y + 3z − a = 0. M ∈ ( P ) ⇒ a = −7
⇒ ( P ) : x + 3y + 3z + 7 = 0

Chọn C
Câu 64:

uuur

( P ) : AB = ( −3,7,−1)
Vecto pháp tuyến của
( P ) :3x − 7y + z + D = 0
Phương trình
 D

 D 
M  − ,0,0÷; N  0, ,0÷; E ( 0,0, − D )
( P ) cắt 3 trục tọa độ tại  3   7 
1
1D D
O.MNE = OM .ON .OE =
. .D
6
6 3 7
Thể tích hình chóp
D

3

3
3
⇔ D = 27 ⇔ D = ±3
126 14
⇒ ( P ) : 3x − 7y + z ± 3 = 0



=

Chọn A
Câu 65:
uuur
uuur
r
uuur uuur
BC = ( 0, −2, −2) ; BD = ( −1, −1, −1) ⇒ n =  BC , BD  = 2( 0,1, −1)


www.thuvienhoclieu.com

Trang 22


www.thuvienhoclieu.com
( BCD ) : ( x − 1) 0+ ( y − 1) + ( z − 2) ( −1) = 0
Phương trình tổng quát của
⇔ ( BCD ) : y − z + 1 = 0
AH = d( A , BCD ) =

1+ 1+ 1
2

=

3 2
2

Chọn B
Câu 66:
uuur
uuur
r
uuur uuur
AB = ( 1,0,3) ; AC = ( 1, −2,1) ; n =  AB, AC  = 2( 3,1, −1)


uuur
uu
r uuur uuur
AD = ( 0, −1,2) ⇒ n2 =  AB, AD  = ( 3, −2, −1)


( ABC ) và ( ABD ) là:
Cosin của góc α của hai mặt phẳng
9 − 2 + 1 4 154
cos a =
=
77
11. 14
Chọn D
Câu 67:
(P) cắt cạnh CD tại E, E chia đoạn CD theo tỷ số −3

xC + 3xD 1+ 3.0 1
=
=
x =
4
4
4

y + 3yD −1+ 3.0 −1

⇒ E y = C
=
=
4
4
4

zC + 3zD 0 + 3.1 3

=
=
z =
4
4
4

uuur
uuur  1 5 7  1
AB = ( 1,0,3) ; AE =  ; − ; ÷ = ( 1, −5,7)
 4 4 4 4
r
uuur uuur
P ) : n =  AB, AE = ( 15, −4, −5)
(


Pháp vecto của
⇒ ( P ) : ( x − 0) 15+ ( y − 1) ( −4) + ( z + 1) ( −5) = 0 ⇔ 15x − 4y − 5z − 1 = 0
Chọn A
Câu 68:
3

 AM 
1
 AB ÷ = 27

Tỷ số thể tích hai khối AMNE và ABCD: 
AM 1

= ⇒
AB 3
M chia cạnh BA theo tỷ số −2
 1+ 2.0 1
=

3
3

uuur
uuur
1
+
2.1

⇒ E y =
= 1 ; BC = −2( 0,1,1) ; BD = − ( 1,1,1)
3

2 + 2( −1)

=0
z =
3

r
Q ) : n = ( 0,1, −1)
(
Pháp vecto của

1
⇒ M ∈ ( Q ) ⇒ ( Q ) :  x − ÷0 + ( y − 1) 1+ ( z − 0) ( −1) = 0
3

⇒ ( P ) : y − z − 1= 0

Chọn B
www.thuvienhoclieu.com

Trang 23


www.thuvienhoclieu.com
Câu 69:

r uuur
a = AC = ( 1, −2,1)
là:
uuur
uuur
uu
r uuur uuur
AB = ( 1,0,3) ; AD = ( 0, −1,2) ⇒ bR =  AB, AD  = ( 3, −2, −1)


r
r uu
r


⇒ Pháp vecto của ( R) : n =  a,bR  = 4( 1,1,1)

( E)
Một vecto chỉ phương của

⇒ ( R) : ( x − 0) 1+ ( y − 1) + ( z + 1) 1 = 0 ⇔ x + y + z = 0

Chọn C
Câu 70:
H ( 1,0,0) ; I ( 0, −1,0) ; K ( 0,0,1)

x y z
⇒ ( HIK ) : + + = 1 ⇔ x − y + z − 1 = 0
1 −1 1
Chọn B
Câu 71:
M '( − x, y, z) ∈ ( Q )
M ( x, y, z) ∈ ( P )
( yOz)
Gọi
là điểm đối xứng của
qua
⇒ ( Q ) : −3x − 4y + 2zz − 5 ⇔ 9Q : 3x + 4y − 2z + 5 = 0
Chọn A
Câu 72:

N ( x, y, z) ∈ ( R )
M ( xM , yM , zM ) ∈ ( P )
A ( 3, −2,1) :
Gọi
là điểm đối xứng của
qua điểm
xM = 6− x; yM = −4− y; zM = 2− z

⇒ 3( 6− x) − 4( −4− y) + 2( 2 − z) − 5 = 0

⇒ 9E : 3x − 4y + 2z − 33 = 0
Chọn D
Câu 73:
E ( x, y, z) ∈ ( α )
M ( xM , yM , zM ) ∈ ( P )
Gọi
là điểm đối xứng của
qua trục
y'Oy : xM = − x; yM = y; zM = − z

⇒ 3( − x) − 4y + 2( − z) − 5 = 0 ⇔ ( α ) : 3x + 4y + 2z + 5 = 0

Chọn D.
Câu 74:
F ( x, y, z)

( P ) một đoạn bằng 29 ;
cách
3x − 4y + 2z − 5
d( E, P ) =
= 29
29
Suy ra 3x − 4y + 2z − 34 = 0 hoặc 3x − 4y + 2z + 24 = 0 .

Chọn C.
Câu 75:
( P ) : xcos60o + y cos45o + z cos60o − 3 = 0

2y z
x
⇔ ( P) : +
+ − 3= 0
2
2
2
Chọn D.
Câu 76:

www.thuvienhoclieu.com

Trang 24


www.thuvienhoclieu.com
y

( P ) : 2x − 2 +

2z
− d= 0
2
1 1 2
H ∈ ( P ) ⇒ + + − d = 0⇒ d = 1
4 4 4
x y
2z
⇒ ( P) : − +
− 1= 0
2 2
2
Chọn B
Câu 77:
uuuu
r
H ( pcosα , pcos β , ccosγ ) ⇒ OH = ( pcosα , pcos β , ccosγ )
uuuur
M ( x, y, z) ∈ ( P ) ⇒ HM = ( x − pcosα , y − pcos β , z − ccosγ )
Gọi
uuuu
r uuuur
OH ⊥ HM ⇔ ( x − pcosα ) pcosα + ( y − pcos β ) pcos β + ( z − pcosγ ) pcosγ
⇔ ( P ) : xcosα + y cos β + z cosγ − p = 0

Chọn A
Câu 78:
d( M , P ) =

1− 4 + 5( −2) − 14
1+ 1+ 25

Chọn D
Câu 79:
uuuur
MH = ( x − 1, y + 4, z + 2)

=

27
3 3

=3 3

cùng phương với pháp vecto

r
n = ( 1,1,5)

của

( P) .

 x− 1 y+ 4 z+ 2
 y = x − 5; z = 5x − 7
=
=

⇒ 1
1
5 ⇔
 x + y + 5z − 14 = 0
 x + y + 5z − 4 = 0

⇒ 27x − 54 = 0 ⇔ x = 2; y = −3; z = 3 ⇒ H ( 2, −3,3)
Chọn D
Câu 80:

( P ) / / ( Q ) :2x − 4y + 4z + 3 = 0 ⇒ ( P ) : 2x − 4y + 4z + D = 0
d( A , P ) = 3 ⇔

4 + 12 + 16 + D

=

D + 32

= 3 ⇔ D = −14∨ D = −50
6
4 + 16 + 16
⇒ ( P ) : 2x − 4y + 4z − 14 = 0; ( P ') : 2x − 4y + 4z − 50 = 0
Chọn C
Câu 81:

( P ) / / ( Q ) : 3x − 2y − 6z + 5 = 0; M ( x, y, z) ∈ ( P ) ⇒ d( M ,Q ) = 4


3x − 2y − 6z + 5

= 3 ⇔ 3x − 2y − 6z + 5 = ±28
9 + 4 + 36
⇔ 3x − 2y − 6z − 23 = 0;3x − 2y − 6z + 33 = 0

Chọn A
Câu 82:
2x + 4y − 4z + 3

2x − y + 2z + 6
6
3
⇔ 2x + 4y − 4z + 3 = ±2( 2x − y + 2z + 6)
=

⇔ 2x − 6y + 8z + 9 = 0 hoặc 6x + 2y + 15 = 0 .
Chọn D
www.thuvienhoclieu.com

Trang 25


Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay

×

×