Tải bản đầy đủ

Một số phương pháp giải bài toán bằng cách lập phương trình

Một số phương pháp giải bài toán bằng cách lập phương trình
MỤC LỤC
Trang
PHẦN I. MỞ ĐẦU................................................................................................2
I. Đặt vấn đề...........................................................................................................2
II. Mục đích nghiên cứu.........................................................................................3
PHẦN II. GIẢI QUYẾT VẤN ĐỀ......................................................................3
I. Cơ sở lí luận của vấn đề......................................................................................3
II. Thực trạng của vấn đề........................................................................................4
III. Các giải pháp đã tiến hành................................................................................6
IV. Tính mới của giải pháp....................................................................................17
V. Hiệu quả SKKN................................................................................................17
PHẦN THỨ III. KẾT LUẬN, KIẾN NGHỊ......................................................26
I. Kết luận..............................................................................................................26
II. Kiến nghị...........................................................................................................26

1

Đào Thị Nữ – THCS Lê Đình Chinh – Krông Ana – Đắk Lắk



Một số phương pháp giải bài toán bằng cách lập phương trình
PHẦN I. MỞ ĐẦU
I. Đặt vấn đề
Trong thời đại hiện nay, kinh tế - xã hội ngày càng phát triển, hội nhập
kinh tế ngày càng mở rộng đòi hỏi nền giáo dục Việt Nam không ngừng được
quan tâm, cải tiến, đổi mới phù hợp với thế giới và các quốc gia trong khu vực.
Những năm qua, cùng với việc đổi mới phương pháp dạy học, sách giáo khoa
cũng được quan tâm chỉnh sữa, đổi mới để phù hợp hơn với yêu cầu của thực
tiễn, đi liền với đó là lượng kiến thức mà học sinh phải tiếp thu tương đối lớn.
Do đó tất cả các môn học đều đòi hỏi ở các em sự chủ động trong từng nội dung
kiến thức, tư duy sáng tạo và không ngừng học hỏi để nâng cao sự hiểu biết. Đặc
biệt đối với môn toán, một trong những bộ môn yêu cầu độ chính xác cao, trình
bày khoa học và phải có tính logic chặt chẽ thì yêu cầu đó lại càng được chú
trọng. Trong bối cảnh đó, nền giáo dục còn có những bất cập về chất lượng giáo
dục, nhiều giáo viên sử dụng phương pháp dạy học lạc hậu đã gây nên tình trạng
thụ động trong học tập của học sinh dẫn đến hiệu quả dạy học chưa cao. Học
sinh ít được lôi cuốn, động viên khích lệ để hứng thú, tự giác học tập, gây nên
tình trạng chán học, bỏ học ở một số bộ phận học lực yếu kém. Vì vậy, bản thân
người giáo viên không chỉ là người có kiến thức vững vàng, nhiệt huyết với
công việc, với vai trò là người tổ chức hướng dẫn và điều khiển quá trình học tập
của học sinh, hơn ai hết người giáo viên cần phải nghiên cứu, phải tìm và phải
biết tiếp cận với cái mới trên cơ sở kế thừa cái hay, cái đẹp của cái cũ để phát
huy tính tích cực, sáng tạo của người học, tạo hứng thú, hưng phấn, khơi gợi
niềm đam mê học tập của học sinh. Thật vậy, đó không chỉ là điều mà các thầy
cô giáo mong muốn mà còn là mục tiêu chung của bộ giáo dục đang đề ra và
được triển khai rộng khắp cả nước.
Bản thân là một giáo viên đã đứng trên bục giảng hơn 8 năm, thời gian
không phải quá dài nhưng cũng ít nhiều rút ra được vài kinh nghiệm quý báu
trong quá trình giảng dạy. Đặc biệt khi trực tiếp giảng dạy bộ môn toán 8, tôi
nhận thấy nội dung kiến thức về Giải bài toán bằng cách lập phương trình là một
trong những dạng bài tập gây cho học sinh rất nhiều khó khăn, số lượng bài tập
vô cùng nhiều và phong phú có trong sách giáo khoa cũng như trong các tài liệu
tham khảo có liên quan. Tuy nhiên để phân loại từng dạng bài tập cũng như
phương pháp đi tìm lời giải cho từng dạng bài tập đóng vai trò quan trọng trong
việc phụ đạo học sinh yếu cũng như bồi dưỡng và nâng cao kiến thức cho các
em học sinh giỏi. Tôi nghĩ cần phải làm như thế nào đó để học sinh có thể vận
dụng được tốt trong việc phân chia được các dạng, tìm được phương pháp giải
và không có sự nhầm lẫn giữa các dạng bài tập. Và đây cũng là tiền đề để các em
chủ động hơn trong việc vận dụng vào kiến thức Giải bài toán bằng cách lập hệ
phương trình khi được học lên lớp 9. Kiến thức về dạng bài tập này tương đối
2

Đào Thị Nữ – THCS Lê Đình Chinh – Krông Ana – Đắk Lắk


Một số phương pháp giải bài toán bằng cách lập phương trình
lớn, tuy nhiên ở đây tôi xin đưa ra một số kinh nghiệm của mình tích lũy được
trong quá trình phụ đạo cũng như ôn thì học sinh giỏi về việc đưa ra “ Một số
phương pháp giải bài toán bằng cách lập phương trình”.
II. Mục đích nghiên cứu
Điều 24, luật giáo dục (do Quốc hội khoá X thông qua) đã chỉ rõ “Phương
pháp giáo dục phải phát huy tính tích cực, chủ động, sáng tạo của học sinh; phù
hợp với từng lớp học, môn học, bồi dưỡng phương pháp tự học, rèn luyện kĩ
năng vận dụng kiến thức vào thực tiễn, tác động đến tình cảm, đem lại niềm vui,
hứng thú học tập cho học sinh”. Đây là mục tiêu không phải chỉ riêng đối với bộ
môn toán mà còn là mục tiêu chung của toàn bộ các môn học.
Từ xưa đến nay môn toán luôn là một trong những môn học được học sinh
và phụ huynh xem như là môn học chính vì nó được vận dụng nhiều trong đời
sống cũng như là tiền đề quan trọng đối với một số môn học khác. Tuy nhiên,
môn toán là một môn học khô khan, đòi hỏi tính chính xác cao, tính logic chặc
chẽ, và độ khó càng ngày càng được nâng lên trong từng nội dung kiến thức theo
từng cấp học. Và đây cũng chính là nguyên nhân gây nên tình trạng một phần
lớn học sinh không hứng thú, cảm thấy áp lực trong mỗi giờ học Toán.
Từ thực tế giảng dạy bộ môn Toán ở THCS trên địa bàn xã nhà trong
nhiều năm, tôi nhận thấy muốn giờ dạy đạt hiệu quả cao, ngoài việc truyền đạt
kiến thức, tôi nghĩ rằng mình cần phải tìm ra phương pháp để gây hứng thú học
tập cho học sinh, làm cho tiết học thực sự nhẹ nhàng, sinh động, học sinh tiếp
thu kiến thức một cách tự nhiên, không gượng ép. Hơn nữa, đối với môn toán,
từng nội dung kiến thức đều liên quan chặt chẽ với nhau, nếu nắm vững nội
dung kiến thức này, thì đây cũng là tiền đề để vận dụng vào nội dung tiếp theo.
Chính vì vậy, tôi đã nghiên cứu và áp dụng nhiều biện pháp vào lớp mình dạy
nhằm mục đích lôi cuốn học sinh vào mỗi tiết học, giúp học sinh hiểu bài dễ
dàng, vận dụng giải bài tập tốt hơn, biến mỗi giờ học toán trở nên thú vị, giúp
các em cảm thấy yêu thích môn học hơn, cảm giác nội dung bài học nhẹ nhàng,
đơn giản, chủ động hơn trong việc tiếp thu kiến thức và vận dụng nó sau này.
PHẦN II. GIẢI QUYẾT VẤN ĐỀ
I. Cơ sở lí luận của vấn đề
Trong mọi thời đại, mục tiêu của ngành giáo dục chính là đào tạo ra một
thế hệ con người mới có sự phát triển toàn diện cả về phẩm chất và đạo đức,
năng lực và trí tuệ để đáp ứng mọi yêu cầu của thực tiễn. Vì vậy, người giáo viên
phải là người biết vận dụng những phương pháp dạy học hiện đại, luôn luôn
không ngừng học hỏi, nâng cao trình độ của bản thân, nhằm mục đích phát huy
3

Đào Thị Nữ – THCS Lê Đình Chinh – Krông Ana – Đắk Lắk


Một số phương pháp giải bài toán bằng cách lập phương trình
tính chủ động, sáng tạo, tính tích cực của học sinh trong các môn học, đặc biệt là
môn Toán.
Tích cực là một trạng thái của hành động trí óc hoặc chân tay của người có
mong muốn hoàn thành tốt một công việc nào đó. Tính tích cực học tập là một
phẩm chất, nhân cách của người học, được thể hiện ở tình cảm, ý chí quyết tâm
giải quyết các vấn đề mà tình huống học tập đặt ra để có tri thức mới, kĩ năng
mới.
Môn Toán còn có sự hấp dẫn riêng vì sự thông thái ẩn chứa trong môn học
này. Người giáo viên Toán cần làm cho học sinh thấy được cái hay, cái đẹp, cái ý
nghĩa của mỗi nội dung toán học mà các em được học. Nếu giáo viên không làm
cho học sinh cảm thụ được những điều đó, thì các em sẽ cảm thấy toán học rất
khô khan, mất hết ý nghĩa của việc học toán.
Chính vì vậy, việc giúp học sinh giải quyết những khó khăn trong quá
trình học, tìm ra được những phương pháp để giải quyết các bài toán khó, thì
người giáo viên đóng một vai trò vô cùng quan trọng. Đây cũng chính là vấn đề
mà bản thân tôi luôn trăn trở khi giảng dạy cho các em.
Chương trình học của môn Toán vô cùng rộng lớn, đặc biệt là kiến thức về
phương trình, một trong những kiến thức mà các em thường xuyên gặp phải từ
những dạng đơn giản đến phức tạp. Đến năm học lớp 8, dạng toán này mở rộng
ra là bài toán có lời giải, các em phải là những người đọc đề bài toán sau đó lập
cho mình một phương trình để giải quyết, dạng toán này tương đối mới mẻ, các
em phải biết liên hệ với các môn học khác, các tình huống xảy ra trong thực tế
để tìm ra cho mình một hướng giải quyết bài toán, do đó gây cho các em khá
nhiều khó khăn. Đa số các em không thể dễ dàng giải quyết được bài toán này,
đây chính là vấn đề mà tôi luôn trăn trở khi trực tiếp giảng dạy các em. “Lập
phương trình đối với một bài toán cho trước là biện pháp cơ bản để áp dụng toán
học vào khoa học tự nhiên và kỹ thuật. Không có phương trình thì không có toán
học, nó như phương tiện nhận thức tự nhiên” (P.X.Alêkxanđơrôp).
Vì những lẽ trên, tôi đã tích góp tất cả kinh nghiệm và nghiên cứu của bản
thân để tìm ra: Một số phương pháp giải quyết bài toán bằng cách lập
phương trình.
II. Thực trạng của vấn đề
Trường THCS Lê Đình Chinh là trường có nền tảng giáo dục lâu đời,
nhiều giáo viên có kiến thức chuyên môn vững vàng, nhiệt tình trong công tác
giảng dạy, luôn luôn tìm tòi để nâng cao trình độ chuyên môn, nghiệp vụ.

4

Đào Thị Nữ – THCS Lê Đình Chinh – Krông Ana – Đắk Lắk


Một số phương pháp giải bài toán bằng cách lập phương trình
Mặc khác, Trường vừa đạt chuẩn quốc gia cấp độ 1 nên cơ sở vật chất của
nhà trường cũng ngày càng được cải thiện theo hướng tích cực, để phục vụ nhu
cầu dạy và học của thầy trò trong trường.
Về công tác chuyên môn, nhà trường cũng thường xuyên tổ chức các buổi
chuyên đề, thao giảng dự giờ, đóng góp ý kiến cho nhau, để tiết dạy được hoàn
thiện hơn.
Bên cạnh đó, Phòng Giáo dục của huyện nhà cũng tổ chức định kì các
chuyên đề để trao đổi công tác chuyên môn theo các cụm giáo dục. Đây cũng là
dịp để các thầy cô giáo trao đổi kinh nghiệm giảng dạy giữa các trường với nhau
để ngày càng nâng cao chất lượng giảng dạy.
Về học sinh, các em học sinh của trường đa phần là con em nông dân,
người Quảng Nam, nên tính tình hiền lành, ngoan ngoãn, chăm chỉ mặc dù điều
kiện gia đình còn khó khăn nhưng các em luôn nỗ lực, cố gắng phấn đấu khắc
phục khó khăn để vươn lên trong học tập. Phụ huynh học sinh cũng có sự phối
hợp nhịp nhàng với giáo viên trong công tác quản lý và giáo dục học sinh.
Ngoài những thuận lợi kể trên thì hiện tại trường vẫn gặp nhiều khó khăn
nhất định. Cơ sở vật chất của trường tuy đã được đầu tư hơn trước, nhưng so với
nhu cầu sử dụng thì vẫn còn nghèo nàn và thiếu thốn khá nhiều. Lực lượng giáo
viên trẻ còn nhiều nên còn thiếu kinh nghiệm trong việc giảng dạy. Gia đình học
sinh chủ yếu là lao động chân tay nên điều kiện học tập của các em còn hạn chế,
ngoài thời gian đến lớp, đa phần các em còn phải phụ giúp gia đình trong công
việc đồng án ở nhà, do đó thời gian học tập ở nhà còn hạn hẹp. Không những
vậy, nhiều gia đình học sinh có hoàn cảnh hết sức khó khăn nên một bộ phận học
sinh có tư tưởng bở học đi làm thêm kiếm tiền phụ giúp gia đình gây nên khó
khăn không nhở trong việc vận động học sinh đến lớp của giáo viên.
Năm học 2018-2019 được phân công giảng dạy môn Toán 8, sau khi nhận
nhiệm vụ tôi đã tiến hành điều tra, sát hạch về hứng thú học tập và kết quả học
tập môn Toán của học sinh ba lớp 8A1, 8A2, 8A3 bằng phiếu điều tra và bài
kiểm tra 90 phút với hình thức trắc nghiệm, tự luận ngay từ đầu năm học với kết
quả thu được như sau:
- Về hứng thú học tập:
Tổng số HS
94

Yêu thích

Không yêu thích

Số lượng

Tỉ lệ

Số lượng

Tỉ lệ

28

29,8%

66

70,2%

- Về kết quả học tập:
5

Đào Thị Nữ – THCS Lê Đình Chinh – Krông Ana – Đắk Lắk


Một số phương pháp giải bài toán bằng cách lập phương trình
Tổng
số HS
94

Giỏi

Khá

Trung bình

Yếu

Số
lượng

Tỉ lệ

Số
lượng

Tỉ lệ

Số
lượng

Tỉ lệ

Số
lượng

Tỉ lệ

7

7.4%

15

16%

65

69,2%

7

7.4%

Đây là kết quả chưa thật sự tốt đối với một trong những bộ môn được xem
như khá quan trọng trong chương trình học của học sinh, đặc biệt trong quá trình
giảng dạy vẫn còn một phần lớn học sinh khá thụ động trong việc tiếp thu kiến
thức, cũng như giải bài tập, không hăng say phát biểu bài, đa số mỗi tiết học là
giáo viên say sưa giảng bài, một phần nhỏ học sinh tiếp thu, phát biểu còn lại đa
số học sinh ngồi chép bài một cách thụ động. Chính vì vậy, việc tìm ra một
phương pháp mới để thay đổi thực trạng trên là vấn đề mà tôi luôn băn khoăn và
suy nghĩ.
III. Các giải pháp đã tiến hành
Khi trực tiếp giảng dạy cho các em học sinh, tôi nhận thấy những khó
khăn mà các em gặp phải đến từ các yếu tố chủ quan cho đến khách quan, việc
giải quyết những khó khăn đó đòi hỏi người giáo viên phải luôn theo sát những
bước đi của các em. Nắm được tâm lý ngại khó, ngại suy nghĩ của các em nên
tôi đã phân chia các bài tập ra từng dạng cụ thể, phân chia các bài tập theo từng
cấp độ phù hợp với từng đối tượng học sinh, đồng thời kích thích, gây sự hứng
thú cho các em học sinh khá giỏi.
Ngoài việc yêu cầu học sinh hoạt động cá nhân, chúng ta còn có thể cho
học sinh nghiên cứu giải quyết bài toán theo hình thức hoạt động cặp đôi, hoạt
động nhóm, thi đua giữa các tổ để tạo nên không khí thoải mái, kích thích sự tự
giác, chủ động, sáng tạo của các em học sinh, bên cạnh đó, các em còn có thể
giúp đỡ nhau trong quá trình học tập.
Bên cạnh đó, bản thân tôi luôn quan sát, hướng dẫn các em trong cách
trình bày bài giải, sửa lỗi cho các em ngay trực tiếp khi giải quyết bài toán, điều
đó sẽ giúp các em ghi nhớ, và khắc sâu hơn nội dung bài toán, tránh việc các em
thấy khó mà nản chỉ, không chịu suy nghĩ, đồng thời có thể nhận ra những khó
khăn mà các em gặp phải, để rút ra kinh nghiệm cho bản thân trong quá trình
giảng dạy.
Khi học xong giải bài toán bằng cách lập phương trình, bản thân tôi còn
dùng phương pháp trò chuyện gợi mở để thu thập thêm một số thông tin , phân
loại đối tượng học sinh trong việc giải toán bằng cách lập phương trình .

6

Đào Thị Nữ – THCS Lê Đình Chinh – Krông Ana – Đắk Lắk


Một số phương pháp giải bài toán bằng cách lập phương trình
Tuy nhiên, dù áp dụng phương pháp mới, phương pháp tích cực đến mấy
thì cũng phải và luôn kế thừa những phương pháp truyền thống. Phải biết xen kẽ
bổ sung cho nhau để phù hợp với tình hình thực tế và từng đối tượng học sinh.
Dưới đây là một số giải pháp mà bản thân tôi đã thực hiện:
Giải pháp 1. Hướng dẫn học sinh nghiên cứu đề bài.
Mỗi bài tập đều thuộc các dạng bài tập khác nhau, giáo viên cần hướng
dẫn học sinh đọc thật kĩ đề bài để nắm được các thông tin trong đề bài, thông
qua đó xác định được các đại lượng nào đã cho, đại lượng nào phải đi tìm để đặt
ẩn cho phù hợp ( kèm theo đơn vị và điều kiện hợp lý), bài toán cần áp dụng các
công thức nào có liên quan để giải quyết bài toán.
Giải pháp2. Quy định tiến trình chung để giải bài toán bằng cách lập
phương trình.
Mặc dù mỗi học sinh đều có khả năng tư duy, năng lực của mỗi cá nhân
khác nhau, tuy nhiên, trong bất kỳ bài toán giải bằng cách lập phương trình nào
thì chúng ta cần phải thống nhất cho học sinh một trình tự để giải quyết nó. Qua
đó có thể rèn cho học sinh cách trình bày bài toán một cách logic, khoa học hơn.
Cụ thể như sau:
* Bước 1: Chọn ẩn số ( ghi rõ đơn vị ) và đặt điều kiện cho ẩn;
* Bước 2: Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết;
* Bước 3: Lập phương trình biểu thị mối quan hệ giữa các đại lượng.
* Bước 4: Giải phương trình, chọn nghiệm và kết luận.
Lưu ý: Trong 3 bước trên, cần chỉ ra cho học sinh bước 1 là quan trọng
nhất, nó quyết định bài giải có đúng hay không, các em cần xác định xem bài
toán thuộc dạng bài tập nào để lựa chọn ẩn cho phù hợp. Từ đó xác định đơn vị
và điều kiện của ẩn phải đúng với thực tế cuộc sống hằng ngày của chúng ta.
Tìm ra mối quan hệ với các đại lượng khác để lập ra được phương trình đúng.
Ngoài ra, sau khi tìm được nghiệm của phương trình, phải đối chiếu với
điều kiện xác định ở bước 1 rồi mới đi tới kết luận của bài toán.
Ví dụ: Một người đi xe máy từ A đến B với vân tốc 40 km/h . Lúc về,
người đó đi với vận tốc 30 km/h, nên thời gian về nhiều hơn thời gian đi là 45
phút. Tính quãng đường AB.
Giải:
Bước 1: Gọi x (km) là quãng đường AB ( x > 0)
7

Đào Thị Nữ – THCS Lê Đình Chinh – Krông Ana – Đắk Lắk


Một số phương pháp giải bài toán bằng cách lập phương trình
x
x
Bước 2: Thời gian đi: 40 (giờ) ; thời gian về: 30 (giờ)
3
Bước 3: Vì thời gian về nhiều hơn thời gian đi là 45 phút = 4 giờ nên ta có
x
x
3
phương trình: 30 – 40 = 4
x
x
3
Bước 4: 30 – 40 = 4

� 4x – 3x = 90
� x = 90 (thỏa đ/k)

Vậy quãng đường AB là: 90 km
Giải pháp 3. Phân loại từng dạng bài tập cho học sinh
Tùy theo từng dạng bài tập cụ thể mà người giáo viên có thể hướng dẫn
cho học sinh cách giải quyết cho phù hợp. Giúp học sinh giải quyết các bài toán
một cách chủ động, không bỡ ngỡ khi gặp các bài toán khác nhau, tạo sự hứng
thú cho học sinh. Mỗi dạng toán sẽ có cách giải quyết và hướng dẫn khác nhau,
ta sẽ xét từng dạng cụ thể như sau:
* Dạng 1: Dạng toán về chuyển động:
Trong chương trình toán lớp 8 mà các em học sẽ gặp rất nhiều bài toán
thuộc dạng toán chuyển động này như: các bài toán về chuyển động cùng chiều,
ngược chiều trên cùng một quảng đường, hoặc chuyển động xuôi dòng, ngược
dòng nước….
Vì vậy, để giải quyết các bài toán này, các em cần phải nắm vững các kiến
thức, công thức liên quan. Như đối với bài toán về chuyển động thì các em phải
nắm rõ mối liên hệ giữa các đại lượng về quãng đường, thời gian, vận tốc và mối
s
s
v=
t=
t ;
v . Hay đối với
liên hệ của chúng qua công thức: s=v.t. Từ đó suy ra:
bài toán chuyển động xuôi dòng, ngược dòng nước các em phải nắm được:
vxuôi = vThực + v dòng nước ; vngược = vThực - v dòng nước
Từ đó mới có thể suy luận để lập ra được phương trình phù hợp.
Ví dụ: Đối với bài toán: Một ca nô xuôi dòng từ bến A đến bến B mất 6 giờ và
ngược dòng từ bến B về bến A mất 7 giờ. Tính khoảng cách giữa hai bến A và B,
biết rằng vận tốc của dòng nước là 2 km/h.
8

Đào Thị Nữ – THCS Lê Đình Chinh – Krông Ana – Đắk Lắk


Một số phương pháp giải bài toán bằng cách lập phương trình
Phân tích bài toán:
Đối với các dạng toán về chuyển động này thì ta có thể hướng dẫn học
sinh lập bảng hay vẽ sơ đồ về mối liên hệ giữa các đại lương, khi đó các em sẽ
dễ dàng tìm được hướng giải quyết bài toán hơn. Cụ thể:
Nếu ta gọi x (km/h) là vận tốc của ca nô ( x > 2) thì dựa vào mối liên hệ
giữa quảng đường, vận tốc, thời gian và vận tốc khi đi xuôi dòng, ngược dòng
nước ta có bảng tóm tắt sau:
Ca nô
S(km)
V (km/h)
t(h)
Xuôi dòng
6(x+2)
x +2
6
Ngược dòng
7(x-2)
x-2
7
Qua bảng tóm tắt ta dễ dàng lập ra được phương trình: 6(x+2) = 7(x-2).
Giải:
Gọi x (km/h) là vận tốc của ca nô ( x > 2).
Vận tốc khi ca nô đi xuôi dòng nước là: x+2 (km/h)
Quảng đường ca nô đi khi xuôi dòng là: 6(x+2) (km)
Vận tốc khi ca nô đi ngược dòng nước là: x - 2 (km/h)
Quảng đường ca nô đi khi ngược dòng là: 7(x - 2) (km)
Vì quảng đường khi đi và về giống nhau nên ta có phương trình:
6(x+2) = 7(x-2)
� 6x +12=7x – 14
� x = 26 ( Thỏa mãn Đ/k).

( Đến đây học sinh dễ mắc sai lầm là đi kết luận bài toán: Vận tốc của ca
nô là 26 km/h. Do đó cần hướng dẫn các em xác định rõ yêu cầu của bài toán
là tìm cái gì để có đáp án hợp lý).
Vậy quảng đường từ A đến B là: 6.( 26+2) =168 km
Lưu ý: Trong một bài toán sẽ có nhiều đại lượng chưa biết, ta phải căn cứ
vào đề bài để lựa chọn ẩn cho phù hợp. Ưu tiên chọn trực tiếp đại lượng bài toán

9

Đào Thị Nữ – THCS Lê Đình Chinh – Krông Ana – Đắk Lắk


Một số phương pháp giải bài toán bằng cách lập phương trình
yêu cầu làm ẩn. Tuy nhiên, trong một số trường hợp không thể chọn trực tiếp ta
phải chọn đại lượng trung gian làm ẩn như trong ví dụ nêu trên.
Một số bài toán tương tự:
Bài 1: Một người dự định đi từ Hà Nội về Thanh Hóa. Ban đầu Người đó dự
định đi xe máy với vận tốc 50km/h. Nhưng sau đó người đó lại đi ô tô với vận
tốc 60km/h nên đã đến sớm hơn dự định là 1 giờ. Tính quãng đường từ Hà Nội
vào đến Thanh Hóa
Bài 2: Một người đi từ A đến B. Lúc đầu người đó dự định đi với vận tốc là
40km/h, nhưng đi được ½ quãng đường thì người đó dừng xe nghỉ 20 phút. Để
đến B đúng dự định người đó phải đi với vận tốc mới lớn hơn vận tốc cũ là
10km/h. Tính quãng đường AB.
Bài 3: Một xe máy khởi hành từ A đến B vào lúc 10 h sang với vận tốc là
45km/h. Lúc 11h sang, một ô tô cũng xuất phát từ A đến B với vận tốc là
60km/h. Hỏi 2 xe gặp nhau lúc mấy h ?
Bài 4: Một xe máy đi từ A đến B với vận tốc 50km/h. Đến B người đó nghỉ 15
phút rồi quay về A với vận tốc 40km/h. Biết thời gian tổng cộng hết 2 giờ 30
phút. Tính quãng đường AB.
Bài 5: Một người đi ôtô từ A đến B dài 240 km ,trên nửa quãng đường đầu đi
với vận tốc dự định , trên nửa quãng đương sau người đó đi với vận tốc bằng 3/2
vận tốc dự định .Tính vận tốc dự định ,biết thời gian đi trên cả quãng đườg là 5
giờ ?
Bài 6: Đường sông từ thành phố A đến thành phố B ngắn hơn đường bộ là 10
km. Canô đi từ A đến B hết 3h20’ còn ôtô đi hết 2h. Vận tốc của canô nhỏ hơn
vận tốc của ôtô là 17 km/h. Tính vận tốc của canô ?
Bài 7:Một ca nô chạy trên một khúc sông từ bến A đến bến B, khi đi xuôi dòng
thì mất 5 giờ, khi đi ngược dòng thì mất 6 giờ. Tính khoảng cách từ bến A đến
bến B, biết vân tốc của ca nô khi đi xuôi dòng hơn vân tốc của ca nô khi đi
ngược dòng là 6km/giờ?
Bài 8:Một ca nô xuôi dòng từ A đến B hết 4 giờ và ngược dòng từ B về A hết 6
giờ. Biết vận tốc của dòng nước 50m/phút. Tính
a, Chiều dài quãng sông AB
10

Đào Thị Nữ – THCS Lê Đình Chinh – Krông Ana – Đắk Lắk


Một số phương pháp giải bài toán bằng cách lập phương trình
b, Vận tốc ca nô trong nước yên lặng.
Bài 9: Một ca nô xuôi dòng từ A đến B hết 2 giờ và ngược dòng từ B về A hết 4
giờ. Hỏi một cụm bèo trôi theo dòng nước từ A đến B hết mấy giờ?
Bài 10: Lúc 6 giờ sáng một chuyến tàu thuỷ chở khách xuôi dòng từ A đến B
nghỉ lại 2 giờ để trả và đón khách rồi lại ngược dongngf về đến A lúc 3 giờ 20
phút chiều cùng ngày. Hãy tính khoảng cách giữa hai bến A và B, biết rằng thời
gian xuôi dòng nhanh hơn thời gian ngược dòng 40 phút và vận tốc của dòng
nước là 50m/phút.
Bài 11:Một nhóm các bạn bơi thuyền đi chơi xuôi dòng sông với vận tốc là
6km/giờ và bơi ngược dòng với vận tốc là 3km/giờ. Hỏi
a, Nếu chuyến đi chơi kéo dài 4 giờ thì khi rời bến bao xa thì các bạn phải
quay lại để trở về đúng giờ?
b, Vận tốc của dòng sông?
c, Vận tốc thực của thuyền?
* Dạng 2: Dạng toán liên quan đến số học
Đối với các bài tập dạng này các em cần phải phân tích đề bài để tìm ra
quy luật của hai số đó. Thông thường ta coi hai số là số lớn và số bé rồi tìm mối
liên hệ giữa chúng để lập ra phương trình cụ thể và giải.
Ví dụ: Hiệu hai số là 15. Nếu chia số bé cho 5 và số lớn cho 10 thì thương
thứ nhất lớn hơn thương thứ hai là 2 đơn vị. Tìm hai số đó.
Phân tích bài toán:
Bài toán có hai đại lượng chưa biết là số lớn và số bé.
Nếu gọi số lớn là x thì số bé biểu diễn bởi biểu thức nào?
Hướng dẫn học sinh lập bảng để tìm mối liên hệ giữa các đại lượng
Giá trị

Thương

Số bé

x - 15

x  15
5

Số lớn

x

x
10

Từ bảng vừa lập ta có thể tìm ra lời giải cho bài toán.
11

Đào Thị Nữ – THCS Lê Đình Chinh – Krông Ana – Đắk Lắk


Một số phương pháp giải bài toán bằng cách lập phương trình
Giải:
Gọi số lớn là x.
Số bé là: x - 15
x  15
Chia số bé cho 5 ta được thương là : 5 .
x
Chia số lớn cho 10 ta được thương là: 10

Vì thương thứ nhất lớn hơn thương thứ hai 2 đơn vị nên ta có phương trình:
x  15 x
5 - 10 = 2

Giải phương trình ta được x = 50
Vậy số lớn là 50.
Số bé là: 50 - 15 =35.
Một số bài toán tương tự:
Bài 1. Tuổi bố và tuổi con cộng lại được 58 tuổi. Bố hơn con 38 tuổi. Hỏi bố bao
nhiêu tuổi, con bao nhiêu tuổi?
Bài 2. Hai ông cháu hiện nay có tổng số tuổi là 68, biết rằng cách đây 5 năm
cháu kém ông 52 tuổi. Tính số tuổi của mỗi người.
Bài 3. Hai thùng dầu có tất cả 116 lít. Nếu chuyển 6 lít từ thùng thứ nhất sang
thùng thứ hai thì lượng dầu ở hai thùng bằng nhau. Hỏi mỗi thùng có bao nhiêu
lít dầu ?
Bài 4. Cha hơn con 32 tuổi. Biết 4 năm nữa tổng số tuổi của 2 cha con là 64 tuổi.
Tính tuổi 2 cha con hiện nay.
Bài 5. Tổng của hai số là một số lớn nhất có 3 chữ số chia hết cho 5. Biết nếu
thêm vào số bé 35 đơn vị thì ta được số lớn. Tìm mỗi số.
Bài 6. Trên một bãi cỏ người ta đếm được 100 cái chân vừa gà vừa chó. Biết số
chân chó nhiều hơn chân gà là 12 chiếc. Hỏi có bao nhiêu con gà, bao nhiêu con
chó ?
Bài 7. Trên một bãi cỏ người ta đếm được 100 cái mắt vừa gà vừa chó. Biết số
chó nhiều hơn số gà là 12con. Hỏi có bao nhiêu con gà, bao nhiêu con chó ?
Bài 8. Một phép trừ có tổng của số bị trừ, số trừ và hiệu là 7652. Hiệu lớn hơn
số trừ 798 đơn vị. Hãy tìm phép trừ đó.

12

Đào Thị Nữ – THCS Lê Đình Chinh – Krông Ana – Đắk Lắk


Một số phương pháp giải bài toán bằng cách lập phương trình
Bài 9. An và Bình mua chung 45 quyển vở và phải trả hết số tiền là 72000 đồng.
Biết An phải trả nhiều hơn Bình 11200. Hỏi mỗi bạn đã mua bao nhiêu quyển
vở.
Bài 10. Ba bạn Lan, Đào, Hồng có tất cả 27 cái kẹo. Nếu Lan cho Đào 5 cái,
Đào cho Hồng 3 cái, Hồng lại cho Lan 1 cái thì số kẹo của ba bạn bằng nhau.
Hỏi lúc đầu mỗi bạn có bao nhiêu cái kẹo ?
* Dạng 3: Dạng toán về công việc làm chung, làm riêng, năng suất lao
động, tỉ lệ chia phần
Khi gặp dạng toán này, cần lưu ý cho học sinh phải đọc đề bài cho cụ thể,
tìm đúng ẩn để đặt, biểu thị qua các đơn vị quy ước. từ đó lập phương trình để
giải.
Ví dụ 1: Một tổ sản xuất theo kế hoạch mỗi ngày phải sản xuất 50 sản
phẩm. Khi thực hiện, mỗi ngày tổ đã sản xuất được 57 sản phẩm. Do đó tổ đã
hoàn thành trước kế hoạch 1 ngày và còn vượt mức 13 sản phẩm. Hỏi theo kế
hoạch, tổ phải sản xuất bao nhiêu sản phẩm?
Lập bảng phân tích:
Năng suất 1 ngày
Số ngày ( ngày ) Số sản phẩm ( sản
( sản phẩm/ ngày)
phẩm)
x
Kế hoạch
50
x
Thực hiện

57

50
x 13
57

x+ 13

x x 13
Phương trình : 50 - 57 = 1

Giải:
Gọi x ( sản phẩm) là số sản phẩm theo kế hoạch mà tổ sản xuất phải hoàn thành
(xϵΝ, x > 0).
x
Theo kế hoạch tổ sản xuất phải hoàn thành trong 50 ( ngày)

Số sản phẩm hoàn thành theo thực tế là x+ 13 ( sản phẩm) và thời gian hoàn
x 13
thành là 57 ( ngày).

x x 13
Theo đề ra tổ đã hoàn thành trước 1 ngày nên ta có phương trình 50 - 57 = 1

Giải phương trình ta được x = 93
13

Đào Thị Nữ – THCS Lê Đình Chinh – Krông Ana – Đắk Lắk


Một số phương pháp giải bài toán bằng cách lập phương trình
Vậy số sản phẩm mà tổ sản xuất phải hoàn thành theo kế hoạch là 93 sản phẩm.
Ví dụ 2: Số công nhân của hai xí nghiệp trước kia tỉ lệ với 3 và 4. Nay xí
nghiệp 1 thêm 40 công nhân, xí nghiệp 2 thêm 80 công nhân. Do đó số công
nhân hiện nay của hai xí nghiệp tỉ lệ với 8 và 11. Tính số công nhân của mỗi xí
nghiệp hiện nay.
Phân tích bài toán:
Có hai đối tượng tham gia trong bài toán, đó là xí nghiệp 1 và xí nghiệp 2.
Nếu gọi số công nhân của xí nghiệp 1 là x, thì số công nhân của xí nghiệp 2 biểu
diễn bằng biểu thức nào? Học sinh lập bảng và điền vào các ô trống còn lại và
căn cứ vào giả thiết: Số công nhân của hai xí nghiệp tỉ lệ với 8 và 11 để lập
phương trình.
Số công nhân

Trước kia

Sau khi thêm

Xí nghiệp 1

x

x + 40

Xí nghiệp 2

4
x
3

4
x
3 + 80

Giải:
Gọi x (công nhân) là số công nhân xí nghiệp I trước kia (xϵΝ, x > 0).
4
Số công nhân xí nghiệp II trước kia là 3 x (công nhân).

Số công nhân hiện nay của xí nghiệp I là: x + 40 (công nhân).
4
x
Số công nhân hiện nay của xí nghiệp II là: 3 + 80 (công nhân).

Vì số công nhân của hai xí nghiệp tỉ lệ với 8 và 11 nên ta có phương trình:
4
x  80
x  40 3

8
11

Giải phương trình ta được: x = 600 (thỏa mãn điều kiện).
Vậy số công nhân hiện nay của xí nghiệp I là: 600 + 40 = 640 công nhân.
4
Số công nhân hiện nay của xí nghiệp II là: 3 .600 + 80 = 880 công nhân.

Một số bài toán tương tự:
14

Đào Thị Nữ – THCS Lê Đình Chinh – Krông Ana – Đắk Lắk


Một số phương pháp giải bài toán bằng cách lập phương trình
Bài 1. Theo kế hoạch mỗi ngày tổ Quyết Thắng phải may được 120 cái áo . Khi
thực hiện , mỗi ngày tổ may được 130 cái áo . Nên tổ đã hoàn thành kế hoạch
sớm hơn hai ngày. Hỏi theo kế hoạch , tổ phải may bao nhiêu cái áo?
Bài 2. Trong tháng đầu hai tổ công nhân của một xí nghiệp dệt được 800 tấm
thảm len. Tháng thứ hai tổ I vượt mức 15%, tổ 2 vượt mức 20% nên cả hai tổ dệt
được 945 tấm thảm len. Tính xem trong tháng thứ hai mỗi tổ đã dệt được bao
nhiêu tấm thảm len
Bài 3. Hai đội công nhân cùng sửa một con mương hết 24 ngày. Mỗi ngày phần
1
việc làm được của đội 1 bằng 1 2 phần việc của đội 2 làm được. Nếu làm một

mình, mỗi đội sẽ sửa xong con mương trong bao nhiêu ngày?
Bài 4. Một xí nghiệp hợp đồng dệt tấm thảm len trong 20 ngày. Do cải tiến kỹ
thuật, năng suất dệt của xí nghiệp đã tăng 20%. Bởi vậy, chỉ trong 18 ngày,
không những xí nghiệp đã hoàn thành số thảm cần dệt mà còn dệt thêm được 24
tấm nữa. Tính số thảm mà xí nghiệp phải dệt theo kế hoạch.
Bài 5. Một công nhân dự định sẽ hoàn thành công việc được giao trong 5 giờ.
Lúc đầu mỗi giờ người đó làm được 12 sản phẩm. Khi làm được một nửa số
lượng công việc được giao, nhờ cải tiến kỹ thuật nên mỗi giờ người đó làm thêm
được 3 sản phẩm nữa. Nhờ vậy, công việc hoàn thành trước thời hạn 30 phút.
Tính số sản phẩm người đó dự định làm.
* Dạng 4: Dạng toán liên quan đến các môn học khác.
Đối với dạng toán này các em cần phải nắm được các công thức của từng
môn học, mối liên hệ giữa các yếu tố trong các môn học đó để đặt ẩn và lập
phương trình thích hợp.
Ví dụ: một hợp kim của đồng và kẽm có khối lượng 124g và có thể tích
3
15cm . Tính xem trong hợp kim này có bao nhiêu gam đồng và bao nhiêu gam
kẽm, biết rằng cứ 90g đồng có thể tích 10 cm3 và 7 gam kẽm có thể tích 1 cm3.
15

Đào Thị Nữ – THCS Lê Đình Chinh – Krông Ana – Đắk Lắk


Một số phương pháp giải bài toán bằng cách lập phương trình
( Đối với bài toán này các em cần nhớ lại các công thức tính khối lượng
M
D=
V và suy ra ).
riêng
Giải:
Gọi x là số gam đồng trong hợp kim ( 0 < x < 124)
Số gam kẽm trong hợp kim là 124 – x (g)
Một gam đồng có thể tích là (cm3) nên x gam đồng có thể tích là (cm3).
Một gam kẽm có thể tích là (cm 3) nên 124 – x gam kẽm có thể tích là
(cm3).
Vì thể tích của hợp kim là 15 cm3 nên ta có phương trình
+=15
Giải phương trình ta được x = 89 ( Thỏa mãn đ/k)
Vậy trong hợp kim có 89g đồng và 124 – 89 = 35g kẽm.
Một số bài toán tương tự:
Bài 1. Lan có một miếng bìa hình tam giác ABC vuông tại A, cạnh AB = 3cm.
Lan tính rằng nếu cắt từ miếng bìa đó ra một hình chữ nhật có chiều dài 2cm như
hình bên thì hình chữ nhật ấy có diện tích bằng một nửa diện tích của miếng bìa
ban đầu. Tính độ dài cạnh AC của tam giác ABC.
Bài 2. Biết rằng 200g một dung dịch chứa 50g muối. Hỏi phải pha thêm bao
nhiêu gam nước vào dung dịch đó để được một dung dịch chứa 20% muối?
Bài 3. Tìm một số tự nhiên có hai chữ số, biết rằng nếu viết thêm một chữ số 2
vào bên trái và một chữ số 2 vào bên phải số này thì ta được một chữ số mới lớn
gấp 153 lần số ban đầu.
Bài 4. Một khu vườn hình chữ nhật có chu vi 82m. chiều dài hơn chiều rộng
11m. Tính diện tích khu vườn đó.
Bài 5. Một hình chữ nhật có chu vi là 36m, diện tích 56m 2. Tính độ dài mỗi
cạnh.
Bài 6. Hòa và Bình là hai chị em ruột. Sau 5 năm nữa thì tuổi của Hòa gấp đôi
số tuổi hiện nay, còn sau 3 năm nữa thì tuổi của Bình sẽ gấp 4 lần số tuổi của 3
16

Đào Thị Nữ – THCS Lê Đình Chinh – Krông Ana – Đắk Lắk


Một số phương pháp giải bài toán bằng cách lập phương trình
năm trước. Biết rằng Hòa và Bình có tháng sinh giống nhau. Tìm mối quan hệ
giữa Hòa và Bình?
Giải pháp 3. Đảm bảo đầy đủ yêu cầu trong lời giải
Đối với dạng bài tập có lời giải thì cách trình bày lời giải trong bài toán
phải luôn được đảm bảo. Để làm được điều này, người giáo viên phải hướng dẫn
cụ thể cho các em học sinh trong việc tìm hiểu đề bài toán. Yêu cầu các em đọc
đề bài nhiều lần để nắm rỏ xem bài toán yêu cầu làm gì, đã cho những gì. Nó
giúp các em chọn ẩn phù hợp, đặt điều kiện đúng, lập luận chặt chẽ. Một bài
toán giải hoàn chỉnh phải đảm bảo 5 yêu cầu sau:
+ Lời giải phải có căn cứ rõ ràng, chính xác.
+ Lời giải phải đơn giản.
+ Lời giải phải đầy đủ và mang tính toàn diện.
+ Lời giải phải được trình bày một cách khoa học.
+ Lời giải phải chính xác và không dư thừa.
IV. Tính mới của giải pháp
Với phương pháp giải bài toàn bằng cách lập phương trình này, giáo viên
có thể rèn luyện cho học sinh cách trình bày bài toán, kĩ năng lập phương trình
từ những bài tập cụ thể. Theo dõi được sát hơn sự tiến bộ của học sinh.
Các dạng bài tập được phân chia rõ ràng, ví dụ minh họa cụ thể, tuy chưa
đầy đủ nhưng đa phần là các bài toán mà các em thường gặp trong quá trình học
cũng như ôn thi học sinh giỏi và đã được hướng dẫn một cách cụ thể nhất để các
em nắm được, chủ động trong việc vận dụng vào việc lập phương trình và giải
phương trình.
Mỗi dạng bài tập đều đi kèm với các bài toán có liên quan, qua đó các em
có thể tự rèn thêm bài tập để nắm được nội dung kiến thức mà giáo viên hướng
dẫn. Tuy nhiên, giáo viên cần phải kiểm tra, đánh giá, khắc phục ngay những sai
sót mà học sinh còn mắc phải để học sinh rút kinh nghiệm kịp thời, tránh mắc lỗi
trong những lần giải bài tập kế tiếp.
V. Hiệu quả sáng kiến kinh nghiệm
Qua việc trực tiếp vận dụng sáng kiến này vào công tác giảng dạy, tôi đã
đạt được một số hiệu quả cụ thể như sau:
- Kiến thức: Đảm bảo đầy đủ nội dung bài dạy, khách quan khoa học theo
đúng chuẩn kiến thức đặt ra trước đó. Nội dung bài dạy trở nên nhẹ nhàng, dễ
17

Đào Thị Nữ – THCS Lê Đình Chinh – Krông Ana – Đắk Lắk


Một số phương pháp giải bài toán bằng cách lập phương trình
hiểu phù hợp với tầm hiểu biết của học sinh, có thể giúp học sinh nhớ lâu kiến
thức một cách tự nhiên nhất mà không mang tính ép buộc trong lớp học.

Các em đã chủ động hơn trong việc nắm kiến thức bài học, mạnh dạn, tự giác lên
bảng sửa bài tập.
- Khả năng tự tin, chủ động, sáng tạo: Đây là những kinh nghiệm có được
qua nhiều năm trực tiếp giảng dạy, nên sau khi thực hiện kết quả lớn nhất thu về
không chỉ là nội dung kiến thức mà các em còn tự nhận thấy vai trò cá nhân của
mình trong tập thể và nâng cao khả năng làm chủ kiến thức của mình hơn. Tính
chủ động trong việc nắm nội dung bài học cũng như giải quyết bài toán có liên
quan được nâng cao, đa số các em đã tự giải quyết được bài toán của mình.
Ngoài ra các em học sinh khá giỏi còn tự mình tìm kiếm thêm cho mình các bài
toán nâng cao để củng cố thêm kiến thức. Điều này tạo tiền đề cho việc học sau
này của các em khi gặp các kiến thức nâng cao hơn nữa ở chương trình học lớp
9, cũng như sẽ giúp giáo viên truyền thụ kiến thức dễ dàng hơn.

18

Đào Thị Nữ – THCS Lê Đình Chinh – Krông Ana – Đắk Lắk


Một số phương pháp giải bài toán bằng cách lập phương trình

19

Đào Thị Nữ – THCS Lê Đình Chinh – Krông Ana – Đắk Lắk


Một số phương pháp giải bài toán bằng cách lập phương trình

Bài vận dụng của học sinh sau khi học về dạng toán về công việc làm chung,
làm riêng, năng suất lao động, tỉ lệ chia phần.

20

Đào Thị Nữ – THCS Lê Đình Chinh – Krông Ana – Đắk Lắk


Một số phương pháp giải bài toán bằng cách lập phương trình

21

Đào Thị Nữ – THCS Lê Đình Chinh – Krông Ana – Đắk Lắk


Một số phương pháp giải bài toán bằng cách lập phương trình

Bài vận dụng của học sinh vào việc giải bài tập tương tự ở dạng toán liên quan
đến các môn học khác ( Môn hình học)

22

Đào Thị Nữ – THCS Lê Đình Chinh – Krông Ana – Đắk Lắk


Một số phương pháp giải bài toán bằng cách lập phương trình

23

Đào Thị Nữ – THCS Lê Đình Chinh – Krông Ana – Đắk Lắk


Một số phương pháp giải bài toán bằng cách lập phương trình

Bài tập của một em học sinh giỏi tự giác tìm thêm bài tập nâng cao để mở rộng
kiến thức
- Không khí giờ dạy Toán: Sau khi áp dụng các phương pháp này vào thực
tế giảng dạy, đã thu hút các em hơn, giúp cho giờ dạy Toán trở nên nhẹ nhàng,
hào hứng hơn, sinh động hơn và mang nhiều sức sống hơn tránh được cảm giác
nhàm chán, buồn ngủ… mà các em thường gặp phải trong các tiết học trước đó.

Không khí lớp học trở nên thoải mái, các em tự tin hơn trong giờ học
24

Đào Thị Nữ – THCS Lê Đình Chinh – Krông Ana – Đắk Lắk


Một số phương pháp giải bài toán bằng cách lập phương trình
- Kết quả lâu dài: Khi đã nắm được những kiến thức cơ bản, việc vận
dụng nó vào các tiết học sau này sẽ trở nên nhẹ nhàng hơn, tránh sự thụ động
trong học sinh. Đồng thời, việc giải quyết những khó khăn trước mắt, sẽ tạo cho
các em cảm giác hừng thú học tập đối với môn Toán, nó không còn là một môn
khô khan và khó tiếp thu, mang lại một hiệu quả lâu dài cho những tiết tương tự
như vậy sau này, không những thế nó còn giúp học sinh khẳng định được bản
thân mình trong quá trình học từ đó mà có sự phấn đấu tích cực, mạnh dạn hơn
trong các tiết học.
Kết quả khách quan nhất của sáng kiến này, được đánh giá qua các số liệu
cụ thể mà bản thân tôi thu được sau khi thực hiện cuộc khảo sát về hứng thú học
tập về kết quả học tập của các em lớp 8A1, 8A2, 8A3 năm học 2018 – 2019 với
các em lớp 8A1, 8A2, 8A3, 8A4 năm học 2017-2018 mà tôi đã dạy trước đó
được thể hiện qua bảng sau:
Bảng tổng hợp kết quả điều tra :
Nội dung điều tra

Năm học
2017-2018

Năm học
2018-2019

Tổng số học sinh

132

94

Thích học Toán

45 (34.1%)

50(53.2%)

Không thích học Toán
Có quyết tâm tìm hiểu phương pháp giải và mong
muốn bản thân tự giải được bài toán bằng cách lập
phương trình .

87(65.9%)

44(46.8%)

50(37.9%)

60(63.8%)

Biết giải phương trình đưa được về dạng ax + b = 0
và có thể lập được phương trình từ đề bài toán .

45(34.1%)

53(56.4%)

Không thuộc các công thức về sự liên quan tỉ lệ
thuận , tỉ lệ nghịch ; về diện tích hoặc chu vi của các
hình vuông , hình chữ nhật ...

54(40.1%)

25(26.6%)

67(50.1%)

15(16%)

65(49.2%)

45(47.9%)

40(30.3%)

55(58.5%)

Không biết cách sắp xếp các bước trong quá trình
giải toán bằng cách lập phương trình .
Có thể lập được phương trình , nhưng không hiểu và
không biết hướng giải đó đúng hay sai .
Có thể lập được phương trình , có hiểu nhưng không
dám khẳng định là chắc chắn đúng .

25

Đào Thị Nữ – THCS Lê Đình Chinh – Krông Ana – Đắk Lắk


Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay

×

×