Tải bản đầy đủ

Bài giảng Đại số 7 chương 1 bài 5: Lũy thừa của một số hữu tỉ

LUỸ THỪA CỦA
MỘT SỐ HỮU TỈ


KIỂM TRA BÀI CŨ
:

HS 1: Phát biểu định nghĩa lũy thừa bậc n của một số hữa tỉ x. Viết công thức
3

2

4

Tính:  − 1 ÷ ;  − 1 ÷ ;
 2  2

 1
− ÷ ;
 2


HS2: Điền vào chỗ trống :
xm. xn = . . .
Áp dụng : Tính a) 33 . 36 =

x m : xn = . . .
b)

3
 
4

8

3
 
: 4

4

5

 1
− ÷ .
 2


CÁC CÔNG THỨC VỀ LŨY THỪA CỦA MỘT SỐ HỮU TỈ

xn = x.x…x ( x ∈ Q, n ∈ N, n > 1)
n thừa số

x m . x n = x m+n
x m : x n = x m - n (Với x ≠ o; m ≥ n)


KIỂM TRA BÀI CŨ
-HS 1Tính:

2

 1
− ÷ ;
 2

3

4

5

 1  1  1
− ÷ ; − ÷ ; − ÷ .
 2  2  2

Bài giải:
2

1
 1

=

;

÷
8
 2

4

1
 1

=

.

÷
32
 2

1
 1

=
;

÷
4
 2
1
 1

=
;

÷
 2  16

3



5

Nhận xét:
Luỹ thừa bậc chẵn của một số âm là một số dương;
luỹ thừa bậc lẻ của một số âm là một số âm.
HS2:a) 33 . 36 = 39

b)

3
 
4

8

:

3
 
4

4

3
=  4 

4


TIẾT 8.
LUỸ THỪA CỦA MỘT SỐ HỮU TỈ ( tiếp

theo)


3
3
Tiết
8: NHANH
LŨY THỪA
CỦA
MỘT
HỮU
TỈ (tt)
TÍNH
TÍCH
(0.125)
. 8SỐ
NHƯ
THẾ
NÀO?
1. Lũy thừa của một
Ví dụ 1: Tính vaø so saùnh: (2.5)2

tích thức
a) Công
Lũy thừa của một tích

(x.y)n = xn.yn

2
vaøVậy:
22.5(2.5)
2
= 22.52

Qua ví dụ rút ra điều gì?
Ví dụ 2: Tính vaø so saùnh:
3

Nhân hai lũy thừa
cùng số mũ
Lũy thừa của một tích
bằng tích các lũy thừa.

3

3

1 3
1 3
.

 ÷  ÷
 . ÷
2 4
2 4
3

 1
Vaä
y ÷
 2

3

3

 3
 1 3
. ÷ =  . ÷
 4
 2 4

TÍNH NHANH TÍCH (0.125)3. 83 NHƯ THẾ NÀO?


Tiết 8: LŨY THỪA CỦA MỘT SỐ HỮU TỈ (tt)
1. Lũy thừa của một
a)tích
Công thức
Lũy thừa của một tích

(x.y)n = xn.yn
b)Áp

bằng tích các lũy thừa.

dụng: Tính:
5

1
a)  ÷ .35
3

Bài giải:

5

a)

b) (1.5)3 .8
5

1 5 1 
5
.3
=
.3
=
1
=1
 ÷

÷
3
3 

b (1,5)3.8 =

(1,5)3.23 =

(1,5.2)3 =

33 =

27


VẬN DỤNG

Bài 36 (SGK- 22):Viết các biểu thức sau dưới
dạng lũy thừa của một số hữu tỉ

a)10 .2 
=

c) 25 .2
8

4

8

8

=

(10.2)

8

(52)4.28

=
=

208
58.28

=

108


Ví dụ : Tính và so sánh

− 2  ( -2)

a /
 vaø
 3 3
2

2

3

b / 10
2
3

2

Nhóm 1; 2;3

2

-2

VAÄY

 3

(
)

2
=

3

10

vaø
 
 2

Nhóm 4; 5;6
2

2

3

3

10 

10
VAÄY
=

2 2
3

3

Qua ví dụ rút ra nhận xét gì?

2. Lũy thừa của một thương

Lũy thừa của một thương
n

a) Công thức

 x
xn
 ÷ = n
y
 y

(y ≠ 0)

Chia hai lũy thừa cùng số mũ


Tiết 8: LŨY THỪA CỦA MỘT SỐ HỮU TỈ (tt)
2. Lũy thừa của một thương
a) Công thức
n

 x
xn
 ÷ = n
y
 y

Lũy thừa của một thương

(y ≠ 0)

bằng thương các lũy thừa.

b) Áp dụng :Tính:
Bài giải:

722
;
2
24

(-7,5)3
;
3
(2,5)
2

722  72 
=  ÷ = 32 = 9
2
24  24 
3

(-7,5)3  -7,5 
3
=
=
-3
= -27

÷
3
(2,5)
 2, 5 
3

153 153  15 
= 3 =  ÷ = 53 = 125
27
3
 3

153
.
27


n

(x.y)n = xn.yn
Tính:
a) (0,125)3 . 83

 x
xn
 ÷ = n
y
 y

(y ≠ 0)

b) (-39)4 : 134

Bài giải:
a) (0,125)3 .83 = (0,125.8)3 = 13 = 1
b) (-39)4 : (13)4 = (-39 : 13)4 = (-3)4 = 81


CÁC CÔNG THỨC VỀ LŨY THỪA CỦA MỘT SỐ HỮU TỈ

xn = x.x…x ( x ∈ Q, n ∈ N, n > 1)

n

an
a
 ÷ = n
b
b

n thừa số

a; b ∈ Z; b ≠ 0

x m . x n = x m+n
x m : x n = x m - n (Với x ≠ o; m ≥ n)
(x m)n = x m.n

(x.y)n = xn.yn

n

 x
xn
 ÷ = n
y
 y

(y ≠ 0)


( x.y )

n

Bài 36 (SGK- 22): Viết các
biểu thức sau dưới dạng
lũy thừa của một số hữu tỉ

b)10 :2
8

n

n
VẬN
DỤNG


x
x
n
n
= x .y
 y ÷ = yn
 

8

e)272:253

( y ≠ 0)

b)108:28
=

(10:2)8

8
5
=
e)272:253

=

(33)2:(52)3

=

36:56

=

(0,6)6


Bài 34: (SGK/22)
Điền dấu “x” vào ô đúng, sai thích hợp. Sửa lại các câu sai (nếu có)

Câu
a) ( -5 ) . ( -5 ) = ( -5 )
2

3

Đ S
x

6

b) ( 0,75 ) : 0,75 = ( 0,75 )
3

c) ( 0,2 ) : ( 0,2 ) = ( 0,2 )
10

5

2

10-8

8
8
f) 8 =  ÷
4
4

= 22

3

= ( -5 )

10

2+3

5

2 4

 1    1  6
d)  − ÷  =  − ÷
 7    7 

10

2

= ( -5 )

5

x ( 0,2 ) : ( 0,2 ) = ( 0, 2 ) = ( 0,2 )
x  − 1 ÷  =  − 1 ÷ =  − 1 ÷

2 4

3

( -5 ) . ( -5 )

x

2

503 503  50 
e)
= 3 =  ÷ = 10 3 = 1000
125 5
 5 

Sửa sai

 7  

10 - 5

2.4

 7

8

 7

x
x

2 )
(
8
230
30 - 16
14
=
=
=
2
=
2
48 ( 22 ) 8 216
10

3 10

5


Bài 35: (SGK/22)
m
n
Ta thừa nhận tính chất sau: Với a ≠ 0,a ≠ ±1, nếu a = a thì m = n
Dựa vào tính chất này hãy tìm các số tự nhiên m và n, biết:
m

1
 1 
a)  ÷ =  ÷;
2
 32 
Bài giải:

n

343  7 
b)
= ÷ .
125  5 

m

5

n

3

5

1
1
1
1
a)  ÷ =
= 5 =  ÷ => m = 5
32
2
2
2
3

 7  343 7
7
b)  ÷ =
= 3 =  ÷ => n = 3
 5  125 5
5


Bài 37: (SGK/22)
Tính giá trị của các biểu thức sau:
2

3

27.93
c) 5 2 .
6 .8

4 .4
a) 10 ;
2
Bài giải:

42.43 42+3 ( 2 )
210
a) 10 = 10 = 10 = 10 = 1
2
2
2
2
2 5

27 .93
c) 5 2 =
6 .8

2 .( 3
7

)

2 3

( 2.3 ) . ( 2 )
5

3 2

27 .36
27 .36
3
3
= 5 5 6 = 11 5 = 4 =
2 .3 .2
2 .3
2
16


LŨY THỪA CỦA MỘT SỐ HỮU TỈ


-Ôn tập các quy tắc và công thức về lũy thừa
(đã học ở tiết 7; 8).
- Bài tập: 37(SGK/22)
50; 51 (SBT/11)
Bài tập luyện tập
- Tiết sau luyện tập.




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay

×

×