Tải bản đầy đủ

Chuyen de day so cap so toan 11

CHUYÊN ĐỀ: DÃY SỐ, CẤP SỐ CỘNG, CẤP SỐ NHÂN
PHẦN I: DÃY SỐ

1, Lý thuyết
+ Định nghĩa 1: Một hàm số u xác định trên tập hợp các số nguyên dương N* được gọi
là một dãy số vô hạn (hay gọi tắt là dãy số).
+ Định nghĩa 2: Một hàm số u xác định trên tập m số nguyên dương đầu tiên (m là số
nguyên dương cho trước) là một dãy số hữu hạn.
+ Dãy số tăng: (Un) là dãy số tăng <-> n  N* : U n1  U n
+ Dãy số giảm: (Un) là dãy số giảm <-> n  N* : U n1  U n
+ Dãy số bị chặn trên: (Un) gọi là bị chặn trên nếu  M sao cho U n  M,n  N* .
+ Dãy số bị chặn dưới: (Un) gọi là bị chặn dưới nếu  m sao cho U n  m,n  N* .
+ Dãy số bị chặn: (Un) gọi là bị chặn nếu vừa bị chặn trên và dưới.

2, Bài tập
Dạng 1:Xác định một số số hạng của dãy số.Xác định số hạng tổng quát
của dãy số:
Bài 1: Viết 4 số hạng đầu của dãy số (Un) biết:
3n2  3
a) Un=
n1

(1)n
b) Un=
n8


sin(n )
2
c) Un=
n

d) Un= 2-ncosn 


U  U 2  1
e)  1
n  2,n  N*
U n  U n1  U n2

Bài 2: Cho dãy số xác định: (Un)={1;2;-3;-4;5;6;-7;-8....}
Thiết lập công thức cho số hạng tổng quát Un sao cho công thức ấy phù hợp với 8 số
hạng ban đầu đã cho của dãy:
Giải : Gọi    là phần nguyên của số  (là số nguyên lớn nhất không vượt quá  )
 1  1
 2  1
 3  1
 4  1
 5  1
 6  1
Khi đ?: 
=0;
=0;
=1;
=1;
=2;

 2 
 2 
 2 
 2 
 2  =2;


2












 7  1
 8  1
=2;
 2 
 2  =3





 8 số hạng đầu tiên của dãy số thoả măn công thức Un= (1)

 n1
 2 



.n

U  3
Bài 3: Tìm số hạng tổng quát của dãy số:  1
n  N*
U n1  2U n

Giải: U1=3
U2=2U1=3.2
U3=2.U2=3.22
.....................
Dự đoán: Un=3.2n-1.Sau đó khẳng định bằng quy nạp.
U  1
Bài 4: Cho dãy số (Un) xác định :  1
n  N* . Xác định số hạng tổng quát.
U n1  U n  2

Giải: Do Un=Un-Un-1+Un-1-Un-2+...+U2-U1+U1
=2

+

+.......2

+U1=2n+1

 U1  3

*
Bài 5: Cho dãy số xác định 
1 n  N . Tính Un theo n
U n1  2 U n


Giải: Do Un=

U n U n1 U 2
1
3
.
.... .U1  ( )n1.U1  n1
U n1 U n2 U1
2
2


 U1  2
Bài 6: Cho dãy số xác định bởi: 
n  N* .Tìm Un theo n.

U n1  2  U n



Giải: U1= 2  2.cos  2.cos 2
4
2



U2= 2  U1  2  2.cos  2.cos  2.cos 3
4
8
2

............................................................................
Dự đoán: Un= 2.cos


. Khẳng định công thức bằng quy nạp.
2n1

Dạng 2: Xét tính tăng, giảm (bị chặn) của dãy số.
Cách giải :
Cách 1 : Lập hiệu : Un+1 –Un
+ Nếu Un+1 –Un >0 n N*  (Un ) tăng
+ Nếu Un+1 –Un <0 n N*  (Un ) giảm
Cách 2 : với Un >0 n N*. Lập tỉ số
+ Nếu

Un+1
>1 n N* (Un ) tăng
Un

+ Nếu

Un+1
<1n N* (Un ) giảm
Un

Un+1
Un

Bài 1 : Xét tính tăng, giảm của các dãy số :
a) Un =
HD :

n+3
;
n

b) Un = 1- n+1;

1
c) Un = n+( )n
2


a) Hiệu Un+1 –Un= -

3
<0 n N* (Un ) giảm
n(n+1)

b) Hiệu Un+1 –Un= n+1 – n+2 =-

1
<0 n N* (Un ) giảm
n+1+ n+2

1
c) Hiệu Un+1 –Un= 1- ( )n >0 n N* (Un ) tăng
2
Bài 2 : Xét tính tăng giảm của các dãy số :
a) Un = 2+ 2+...+ 2

b) Un =

n
4n

HD:
a) Ta cần CM: Un <2 n N* bằng quy nạp
Xét Un+1 = 2+Un > 2Un > Un2 =Un  (Un ) tăng
b) Có Un >0 n N*. Lập


Un+1 1
1
1
1
1 1
= ( 1+ ). Vì 1+  2 n N* ( 1+ ) <1
Un 4
n
n
4
n 2

Un+1 1
1
= ( 1+ )<1 hay dãy số giảm
Un 4
n

Bài 3 : Cho dãy số (Un ) xác định bởi : U1 =U2 =U3 =1 n 4
Un =Un-1 +Un-3
CMR dãy số tăng với n 3
Bài 4 : Cho dãy số Un =

1
1
1
1
+
+
+....+
.CMR dãy số (Un ) tăng
n+1 n+2 n+3
2n

Bài 5 : Cho dãy số (Un ) và (Xn ) xác định Un =

n(n+2)
*
2 n N , Xn =U1 U2 ... Un
(n+1)

a) CMR (Un ) tăng, (Xn ) giảm
b) CMR Xn =

n+2
(chứng minh bằng quy nạp)
2(n+1)

1
1
Bài 6: Cho các dãy số (Un ), (Vn ), (Wn ) xác định Un = (1+ )n Vn = (1- )n ,
n
n


1
Wn = (1+ )n+1
n
a) CMR (Un ), (Vn ) tăng, (Wn ) giảm
b) CMR (Un ), (Wn ) bị chặn

HD: Áp dụng BĐT Côsi :

1
1
1
(1+ )+(1+ )+...(1+ ) +1
n
n
n
nsố
n+1



n+1

1
(1+ )n
n

1 n+1
1
 (1+
) >(1+ )n  Un+1 >Un  (Un ) tăng
n+1
n

Dạng 3: Xét tính bị chặn của một dãy số
Phương pháp chung : Xác định các số M, m thông qua đánh giá hoặc sử dụng biến đổi
bất đẳng thức
Bài 1: Xét tính bị chặn của các dãy số sau:
a) Un =3cos

nx
3

b) Un =

5n-3
5n+3

U1=0

Bài 2: Cho dãy số (Un) xác định bởi U =1U +4 n N*
 n+1 2 n

a) CMR (Un) bị chặn trên bởi 8
b) CMR (Un) tăng  (Un) bị chặn

PhÇn II: CẤP SỐ CỘNG, CẤP SỐ NHÂN
1, LÝ thuyÕt
Cấp số cộng
*Định nghĩa

+ là dãy số

Cấp số nhân
+ là dãy số


+ Un=Un-1+d (n N*, n 2)

*Số hạng tổng quát
*Tính chất
*Tổng n số hạng đầu

+ Un=Un-1q (n N*, n 2)

-d : công sai của cấp số

-q : công bội của cấp số

-d=const

-q =const

+ Un=U1+(n-1)d
+ Uk=

Uk+1+Uk-1
(k 2, kN*)
2

n(U1+Un)
+ Sn=
hoặc
2
+ Sn=

+ Un=U1.qn-1
+ Uk2=Uk-1. Uk+1 (k 2, kN*)
1-qn-1
+ Sn= U1
1-q

n[2U1+(n-1)d]
2

2, Bµi tËp
A/ CẤP SỐ CỘNG:
Dạng 1 : Xác định cấp số cộng
1> Trong các dãy số sau, dãy số nào là cấp số cộng? Xác định công sai của cấp số cộng
đó?
a) Dãy (an) xác định bởi a1=1, a=3+ an n 1
b) Dãy (bn) xác định bởi b1=3, bn+1=bn-n n 1
c) Dãy (cn) xác định bởi cn+1=cn+2 n 1
d) Dãy (dn) xác định bởi dn=8n+3
2> Cho dãy số (Un) xác định bởi U1=a, Un+1=5-Un n 1, aR; hãy xác định các giá
trị của a để (Un) là cấp số cộng.

Dạng 2: Xác định các yếu tố của cấp số cộng: d, Uk, Un
2
2
1> Cho cấp số cộng (Un) có U17-U20 =9 và U17
- U20
=153. Hãy xác định số hạng đầu

và công sai của cấp số cộng đó.


2
2> Cho cấp số cộng (Un) có d>0, U31+U34=11 và U231+ U34
=101. Hãy tìm số hạng tổng

quát của cấp số cộng đó.
3> Cho cấp số cộng tăng (Un) có U31+ U315=302094 và tổng 15 số hạng đầu tiên bằng
585. Tìm số hạng đầu và công sai của cấp số cộng đó.

Dạng 3: Các bài toán có liên quan đến tổng Sn
1> Cho cấp số cộng (Un) có U5+ U19=90. Hãy tính tổng 23 số hạng đầu của cấp số
cộng đó.
2> Cho cấp số cộng (Un) có U2+ U5=42, U4+ U9=66. Hãy tính tổng 346 số hạng đầu
tiên của cấp số cộng đó.

Dạng 3: Các dạng toán có liên quan
1> Tìm điều kiện của tham số m để pương trình sau có 3 nghiệm lập thành một cấp số
cộng: x3-3mx2+ 2(m-4)x+ 9m2–m=0
HD: Giả sử phương trình có 3 nghiệm x1, x2, x3. Vì 3 nghiệm lập thành cấp số cộng
nên x1+x2+x3=3m -> x2=m. Thế x=m là nghiệm của phương trình ta được m2–m=0
m=0
 m=1


+ Với m=0 ta được x1=x2=x3=0 (loại)
+ Với m=1 ta được x1=-2,x2=1,x3=4 . Kết luận m=1
2> Tìm điều kiện của tham số để (C) : y=ax3+ bx2+ cx+d (a≠ 0) cắt Ox tại 3 điểm
phân biệt có hoành độ lập thành một cấp số cộng.
3> Tìm điều kiện của tham số m để phương trình x4– 2(m+1)x2+ 2m +1=0 có 4
nghiệm phân biệt lập thành một cấp số cộng.
HD : Đặt t= x2 (t 0). Với điều kiện của giả thiết ta tìm được t2=9t1 (t1, t2 là các

m=4
nghiệm của phương trình ẩn phụ t). Áp dụng Viet ta tìm được m=-4
 9


4> Tìm điều kiện của m để đường thẳng y=m cắt đồ thị hàm số (C)=x4-5x2+4 tại A,
B, C, D phân biệt mà AB=BC=CD.
5> Tìm điều kiện của m để (Cm) : y= x4+2(2m+1)x2-3m cắt Ox tại 4 điểm phân biệt
lập thành một cấp số cộng.
6> Cho dãy số a1, a2,a3,........, an với n 3, thoả mãn điều kiện:
1
1
1
n-1
+
+..........+
=
. CMR dãy số trên lập thành một cấp số cộng.
a1a2 a2a3
an-1an a1an

B/ CẤP SỐ NHÂN:
Bài 1: Cho cấp số nhân có: u3 = 18 và u6 = -486.
Tìm số hạng đầu tiên và công bội q của cấp số nhân đó
U1+U2+U3=13
Bài 2: Tìm u và q của cấp số nhân (un) biết: U +U +U =351


4

5

6

Bài 3: Tìm cấp số nhân (un) biết cấp số đó có 4 số hạng có tổng bằng 360 và số hạng
cuối gấp 9 lần số hạng thứ hai.
Bài 4: Tổng 3 số hạng liên tiếp của một cấp số cộng là 21. Nếu số thứ hai trừ đi 1 và
số thứ ba cộng thêm 1 thì ba số đó lập thành một cấp số nhân. Tìm ba số đó.
Bài 5 : Ba số lập thành một cấp số nhân. Nếu số hạng thứ hai cộng thêm 2 ta được một
cấp số cộng . Sau đó cộng thêm 9 với số hạng thứ ba ta lại được một cấp số nhân. Tìm
ba số ấy.
ĐS:

4
16 64
;- ;
25 25 25

Bài 6 : Giả sử phương trình: x3 + ax2 + bx + c = 0 có 3 nghiệm x1, x2, x3 . Chứng minh
rằng các nghiệm ấy theo thứ tự nào đó lập thành 1 cấp số nhân thì b 3 = ca3.
Bài 7 :Độ dài các cạnh a, b, c của tam giác ABC theo thứ tự lập thành 1 cấp số nhân.
Chứng minh rằng : Tam giác không thể có 2 góc lớn hơn 600.


Bài 8:Với điều kiện nào thì 3 số liên tiếp của 1 cấp số nhân là độ dài các cạnh của 1
tam giác.
Bài 9:Tam giác ABC có tanA, tanB, tanC theo thứ tự lập thành 1 cấp số cộng. Tìm giá
trị nhỏ nhất của biểu thức : F = cosA + cosC.
Bài 10:Tính tổng: 5 + 55 + 555 + 555...5
n

Bài 11:Tìm m để phương trình : x3-(3m+1)x2+(5m+4)x-8=0 c? 3 nghiệm phân biệt lập
thành cấp số nhân.

C/ CẤP SỐ CỘNG, CẤP SỐ NHÂN VÀ PHƯƠNG TRÌNH
cos 2  cos3 x 1
Bài 1: Cho: cos 2x  tan x 
(1 x  70) . Tìm tổng các nghiệm của
cos 2 x
2

phương trình.
Bài 2: Cho phương trình: x8 + ax4 + a4 = 0 . Tìm a để phương trình có 4 nghiệm thực
phân biệt lập thành 1 cấp số cộng.
Bài 3: Cho phương trình: x13 + ax7 + ax4 = o. Tìm a để phương trình có 5 nghiệm thực
phân biệt lập thành 1 cấp số cộng.
Bài 4: Cho hàm số y = x3 – 3x2 – 9x + m. Xác định m để đồ thị hàm số cắt trục hoành
tại 3 điểm phân biệt với các hoành độ lập thành 1 cấp số cộng.
Bài 5: Với giá trị nào của a và b phương trình: x3 + ax + b = 0 có 3 nghiệm phân biệt
khác nhau lập thành 1 cấp số cộng.
Bài 6: Cho hàm số y = x3 – 3mx2 + 2m(m – 4)x + 9m2 – m. Xác định m để đồ thị hàm
số cắt trục hoành tại 3 điểm cách đều nhau.
Bài 7: Cho hàm số y = x3 – 3ax2 + 4a3. Xác định a để đường thẳng y = x cắt đồ thị tại 3
điểm phân biệt A, B, C Với AB = AC.
Bài 8 : Cho hàm số y = x3 – 3x2 – 9x + 1 . Tìm điều kiện đối với a, b để đường thẳng
y = ax + b cắt đồ thị tại 3 điểm phân biệt A, B, C Với B là trung điểm AC.


Bài 9 : Cho hàm số : y = x4 + ax2 + b. Giả sử đồ thị hàm số cắt trục hoành tại 4 điểm có
hoành độ lập thành 1 cấp số cộng. Chứng minh rằng: 9a2 – 100b = 0.
Bài 10: Cho hàm số y = x4 – 2(m + 1)x2 + 2m + 1. Xác định m để đồ thị hàm số cắt
trục hoành tại 4 điểm với các hoành độ lập thành 1 cấp số cộng.
Bài 11: Giả sử phương trình: x3 + ax2 + bx + c = 0 có 3 nghiệm x1, x2, x3 . Chứng minh
rằng các nghiệm ấy theo thứ tự nào đó lập thành 1 cấp số nhân thì b3 = ca3.

D/CẤP SỐ CỘNG,CẤP SỐ NHÂN VÀ HỆ THỨC LƯỢNG TRONG TAM
GIÁC
Bài 1:A, B, C là 3 góc của 1 tam giác. Chứng minh rằng: Nếu: tan

A
B
C
, tan , tan lập
2
2
2

thành 1 cấp số cộng thì cosA, cosB, cosC cũng lập thành 1 cấp số cộng. Điều ngược lại
có đúng không ?
Bài 2: Trong tam giác ABC biết: tan

A
B 1
a b
.
.tan  .CMR :c 
2
2 3
2

Bài 3 : Chứng minh rằng: Nếu tam giác ABC có 3 góc sao cho cot

A
B
C
,cot ,cot theo
2
2
2

thứ tự nào đó lập thành 1 cấp số cộng thì 3 cạnh a, b, c theo thứ tự đó cũng lập thành 1
cấp số cộng.
Bài 4 : a, b, c là 3 cạnh của 1 tam giác, thoả mãn điều kiện a < b < c và lập thành 1 cấp
số cộng. Chứng minh rằng: ac = 6Rr.
Bài 5 : Độ dài các cạnh a, b, c của tam giác ABC theo thứ tự lập thành 1 cấp số cộng.
Chứng minh rằng công sai của cấp số cộng ấy bằng

3r
C
A
( tan  tan ) .
2
2
2

Bài 6: Số đo 3 góc của tam giác ABC lập thành cấp số cộng và thoả mãn đẳng thức:
sinA + sinB + sinC =

3 3
.
2


a. Tính các góc A, B, C.
b. Biết nửa chu vi của tam gíc bằng 50. Tính các cạnh của tam giác.
Bài 7: Độ dài các cạnh a, b, c của tam giác ABC theo thứ tự lập thành 1 cấp số nhân.
Chứng minh rằng : Tam giác không thể có 2 góc lớn hơn 600.
Bài 8: Trong tam giác ABC đặt a = BC, b = CA, c = AB . Giả sử: 4A = 2B = C. Chứng
minh rằng:
1 1 1
 
a b c
cos 2 A  cos 2 B  cos 2 C 

5
4

Bài 9: Với điều kiện nào thì 3 số liên tiếp của 1 cấp số nhân là độ dài các cạnh của 1
tam giác.
Bài 10: Tam giác ABC có tanA, tanB, tanC theo thứ tự lập thành 1 cấp số cộng. Tìm
giá trị nhỏ nhất của biểu thức : F = cosA + cosC.

E/ ÁP DỤNG CẤP SỐ CỘNG, CẤP SỐ NHÂN ĐỂ TÍNH TỔNG.
Bài 1:Hãy biểu thị giá trị của Sn theo n ( n  N * ) của các tổng sau:
a. Sn = 1 + 2+ 3+ …. + n
b. Sn = 12 + 22 + 32 + …. + n2
c. Sn = 13 + 23 + 33 + …..+ n3
d. Sn = 1.2 + 2.3 + 3.4 + …. + n(n+1)
e. Sn = 1.2.3 +2.3.4+….+n(n+1)(n+2)
f. Sn =

1
1
1

 ... 
1.3 3.5
(2n 1)(2n 1)

g. Sn =

1
1
1
.

 .... 
1.2.3 2.3.4
n(n 1)(n  2)


Bài 2: Tính tổng: 5 + 55 + 555 + 555...5 .
n

E/ỨNG DỤNG CẤP SỐ CỘNG, CẤP SỐ NHÂN TÌM SỐ HẠNG TỔNG QUÁT
CỦA MỘT VÀI DÃY SỐ ĐẶC BIỆT
Trong chương trình đại số 11, việc dạy khái niệm cấp số cộng, cấp số nhân là một vấn đề lý
thú, chúng có nhiều ứng dụng trong thực tế và đa số học sinh đều lĩnh hội tốt các khái
niệm này. Trong bài viết này ta sẽ đưa ra một ứng dụng của cấp số cộng, cấp số nhân để
tìm công thức tổng quát của một vài dãy số đặc biệt. Ta xét một số bài toán cụ thể như sau:
Bài toán 1. Dãy số (un) có tính chất: Un+1 = Un +d n N* được gọi là một cấp số
cộng có công sai là d. Tìm (un) theo u1 và d.
Giải.
Ta có: Un=(Un – Un-1)+ (Un-1- Un-2)+...+(U2 – U1)+ U1 =d+d+d+...+d+ U1 =U1+(n-1)d
Bài toán 2. Tính tổng của n số hạng đầu tiên của cấp số cộng (un), công sai d
Giải : Ta có :
U1+ Un=U2-d+ Un-1+d= U2+ Un-1=.....= Uk+ Un-k+1 Với n=1,2,3........

1
1
Vậy U1+ U2+ U3 +....+ Un = [(U1+ Un)+(U2+ Un-1)+....+(Un+ U1)]= n(U1+ Un)
2
2
n
Hay U1+ U2+ U3 +....+ Un = [U1+(n-1)d]
2
Bài toán 3: Dãy số (Un) có tính chất Un+1= Unq, n  N* được gọi là một cấp số nhân có
công bội q. Tìm (Un) theo U1 và q.
Giải :
Ta có : Un = Un-1q= Un-2q2= ...= U1qn-1
Bài toán 4 : Tính tổng n số hạng đầu của cấp số nhân (Un) công bội q ≠ 1


Giải :
Ta có : (1-q)(U1+ U2+....+ Un)= (U1+ U2+....+ Un)- (U2+ U3+....+ Un+1)= U1- Un+1
1-qn
= U1- U1q = U1(1- q )  U1+ U2+....+ Un= U1
1-q
n

n

Bài toán 5 : Cho U1=1, Un+1=2 Un +1. Tìm Un
Giải : Trong bài toán này ta bị lúng túng ngay bởi vì đây không phải là cấp số cộng hay
cấp số nhân đã biết. Vậy có cách nào để tìm Un không ? Làm thế nào để mất số 1 ở vế
phải để được một cấp số nhân ?
Ta viết lại : Un+1+1=2(U1+1) Và thấy rằng nếu thay Un +1 = Vn thì (Vn) là một cấp số
nhân. Từ đó ta có : Vn = V1 2n-1 = 2n  Un = 2n -1.
Bài toán 6 : Cho U1=1, Un+1- Un = n+1. Tìm Un .
Giải : Ta viết : n+1=(n+1)[a(n+1)+b]-n(an+b). Đồng nhất các hệ số theo n ta tìm được
a=b=

1
1
1
 Un+1- (n+1)(n+2)= Un- n(n+1)
2
2
2

1
1
Đặt Vn= Un- n(n+1)  V1=1-1=0. Từ Vn+1 = Vn n  Vn =0 hay Un= n(n+1)
2
2
Mặt khác Un=(Un- Un-1)+(Un-1- Un-2)+...+(U2- U1)+ U1, ta được :
1
n+(n-1)+(n-2)+...+2+1= n(n+1)
2
Chú ý : Bằng cách làm tương tự ta tính được tổng : S= 12+ 22+...+ n2
Bài toán 7 : Tìm dãy (Un) có tính chất Un+1- Un = (n+1)2 , n  N*
Giải : Ta viết : (n+1)2 =a[(n+1)3– n3]+ b[(n+1)2 - n2]+ c[(n+1)-n]
Cho n các giá trị 0, 1, 2 ta được hệ phương trình


a  b  c  1
1
1
1

7a  3b  c  4 . Giải hệ ta được : a= 3 ; b= 2 ; c= 6
19a  5b  c  9


1
1
Từ đó : Un+1- (n+1)(n+2)(2n+3)= Un – n(n+1)(2n+1)
6
6
1
Đặt Vn =Un – n(n+1)(2n+1) ta được Vn+1 = Vn n hay Vn = V1 n
6
1
1
 Un = n(n+1)(2n+1)+ V1 = n(n+1)(2n+1)+ U1-1
6
6
Un = (Un – Un+1)+(Un-1- Un-2)+...+(U2- U1)+ U1= n2+(n-1)2+.....+ 22+ U1
1
Vậy n2+(n-1)2+.....+ 22+ 12= n(n+1)(2n+1).
6
Bài toán 8 : Cho U1=1 ; Un+1-3Un=2n , n  N* . Tìm (Un).
Giải :
Tìm hằng số  sao cho 2n = 2n+1– 3 2n . Ta được  =-1
Un+1 + 2n+1 =3(Un + 2n ). Đặt Vn = Un + 2n ta được : Vn+1 =3 Vn , V1 =3  Vn = 3n
Vậy Un = 3n - 2n
Bài toán 9 : Cho U1=1, Un+1=
Giải : Từ giả thiết ta có :

Un
n  N* . Tính (Un )
1+2Un

1
1
1
= +2. Đặt Vn= ta được Vn+1 = Vn +2, V1 =1
Un+1 Un
Un

 Vn =1+(n-1)2=2n-1  Un =

1
2n-1

Bài toán 10 : Cho U1 =1, U2 =2, Un+2-3Un+1+2Un=2n-1, n  N* . Tìm (Un)
Giải : Viết lại (Un+2- Un+1)- 2(Un+1- Un)=2n-1


Đặt Vn=Un+1- Un, ta được : Vn+1-2Vn=2n-1=[-2(n+1)-1]-2(-2n-1)
 Vn+1 +2n+3=2(Vn +2n+1), V1 =1
Đặt Wn =Vn +2n+1 ta được : Wn+1=2 Wn, W1=V1+3=4  Wn = 2n+1
 Vn= 2n+1-2n-1  Un+1 – Un = 2n+1-2n-1  Un – Un-1 = 2n -(2n-1)
Un =(Un – Un-1)+(Un-1 – Un-2)+....+(U2- U1)+ U1= 2n+ 2n-1+....+ 22-[(2n-1)+(2n-3)+...+3]+1
= 2n+1–n2-2




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay

×