Tải bản đầy đủ

19phngphapchngminhbtngthc 121016083713 phpapp01

19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com

PHẦN 1
CÁC KIẾN THỨC CẦN LƯU Ý

1/Định nghĩa

A ≥ B ⇔ A − B ≥ 0

A ≤ B ⇔ A − B ≤ 0

2/Tính chất
+ A>B ⇔ B < A
+ A>B và B >C ⇔ A > C
+ A>B ⇒ A+C >B + C
+ A>B và C > D ⇒ A+C > B + D
+ A>B và C > 0 ⇒ A.C > B.C
+ A>B và C < 0 ⇒ A.C < B.C
+ 0 < A < B và 0 < C + A > B > 0 ⇒ A n > B n ∀n
+ A > B ⇒ A n > B n với n lẻ

+ A > B ⇒ A n > B n với n chẵn
+ m > n > 0 và A > 1 ⇒ A m > A n
+ m > n > 0 và 0 +A < B và A.B > 0



1 1
>
A B

3/Một số hằng bất đẳng thức
+ A 2 ≥ 0 với ∀ A ( dấu = xảy ra khi A = 0 )
+ An ≥ 0 với ∀ A ( dấu = xảy ra khi A = 0 )
+ A ≥ 0 với ∀A (dấu = xảy ra khi A = 0 )
+ -A + A + B ≥ A + B ( dấu = xảy ra khi A.B > 0)
+ A − B ≤ A − B ( dấu = xảy ra khi A.B < 0)

Sưu tầm và tuyển chọn

1


19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com
PHẦN II
CÁC PHƯƠNG PHÁP CHỨNG MINH BẤT ĐẲNG THỨC
Phương pháp 1 : Dùng định nghĩa
Kiến thức : Để chứng minh A > B. Ta lập hiệu A –B > 0
Lưu ý dùng hằng bất đẳng thức M 2 ≥ 0 với∀ M
Ví dụ 1 ∀ x, y, z chứng minh rằng :
a) x 2 + y 2 + z 2 ≥ xy+ yz + zx
b) x 2 + y 2 + z 2 ≥ 2xy – 2xz + 2yz
c) x 2 + y 2 + z 2 +3 ≥ 2 (x + y + z)
Giải:
1
2

a) Ta xét hiệu : x 2 + y 2 + z 2 - xy – yz – zx = .2 .( x 2 + y 2 + z 2 - xy – yz – zx)


[

]

1
( x − y ) 2 + ( x −z ) 2 + ( y − z ) 2 ≥ 0 đúng với mọi x;y;z ∈ R
2
Vì (x-y)2 ≥ 0 với∀x ; y Dấu bằng xảy ra khi x=y

=

(x-z)2 ≥ 0 với∀x ; z Dấu bằng xảy ra khi x=z
(y-z)2 ≥ 0 với∀ z; y Dấu bằng xảy ra khi z=y
Vậy x 2 + y 2 + z 2 ≥ xy+ yz + zx. Dấu bằng xảy ra khi x = y =z
b)Ta xét hiệu: x 2 + y 2 + z 2 - ( 2xy – 2xz +2yz ) = x 2 + y 2 + z 2 - 2xy +2xz –2yz
= ( x – y + z) 2 ≥ 0 đúng với mọi x;y;z ∈ R
Vậy x 2 + y 2 + z 2 ≥ 2xy – 2xz + 2yz đúng với mọi x;y;z ∈ R
Dấu bằng xảy ra khi x+y=z
c) Ta xét hiệu: x 2 + y 2 + z 2 +3 – 2( x+ y +z ) = x 2 - 2x + 1 + y 2 -2y +1 + z 2 -2z +1
= (x-1) 2 + (y-1) 2 +(z-1) 2 ≥ 0. Dấu(=)xảy ra khi x=y=z=1
Ví dụ 2: chứng minh rằng :
2

a2 + b2  a + b 
≥
a)
 ;
2
 2 

b)

a2 + b2 + c2  a + b + c 
≥

3
3



2

c) Hãy tổng quát bài toán

Giải:
2

a2 + b2  a + b 
−
a) Ta xét hiệu

2
 2 
1
1
2 a2 + b2
a 2 + 2ab + b 2
2

=
= 2a 2 + 2b 2 − a 2 − b 2 − 2ab = ( a − b ) ≥ 0
4
4
4
4
2
2
2
a +b
a+b
≥
Vậy
Dấu bằng xảy ra khi a=b
 .
2
 2 

(

)

(

)

b)Ta xét hiệu

Sưu tầm và tuyển chọn

2


19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com

[

2

]

a2 + b2 + c2  a + b + c  1
2
2
2
−
 = ( a − b ) + ( b − c ) + ( c − a ) ≥ 0 .Vậy
3
3

 9

a2 + b2 + c2  a + b + c 
≥

3
3



2

Dấu bằng xảy ra khi a = b =c
c)Tổng quát
2

a12 + a 22 + .... + a n2  a1 + a 2 + .... + a n 
≥

n
n


Tóm lại các bước để chứng minh A ≥ B theo định nghĩa

Bước 1: Ta xét hiệu H = A - B
Bước 2:Biến đổi H=(C+D) 2 hoặc H=(C+D) 2 +….+(E+F) 2
Bước 3:Kết luận A ≥ B
Ví dụ 1: Chứng minh ∀m,n,p,q ta đều có : m 2 + n 2 + p 2 + q 2 +1≥ m(n+p+q+1)
Giải:
 m2
  m2
  m2
  m2

⇔ 
− mn + n 2  + 
− mp + p 2  + 
− mq + q 2  + 
− m + 1 ≥ 0
 4
  4
  4
  4

2

2

2

2

m
 m
 m
 m 
⇔  − n  +  − p  +  − q  +  − 1 ≥ 0 (luôn đúng)
2
 2
 2
 2

m
m

 2 −n =0
n=

m
2

m
 − p=0
 m=2
2
p =
⇔
Dấu bằng xảy ra khi  m
2 ⇔
n = p = q = 1
 −q =0

m
q
=
2

m
 m = 22

1
=
0

 2

Ví dụ 2: Chứng minh rằng với mọi a, b, c ta luôn có : a 4 + b 4 + c 4 ≥ abc(a + b + c)
Giải: Ta có : a 4 + b 4 + c 4 ≥ abc(a + b + c) , ∀a, b, c > 0
⇔ a 4 + b 4 + c 4 − a 2 bc − b 2 ac − c 2 ab ≥ 0
⇔ 2a 4 + 2b 4 + 2c 4 − 2a 2 bc − 2b 2 ac − 2c 2 ab ≥ 0

(

⇔ a2 −b2

(

⇔ a2 −b2

(

⇔ a2 −b2

)

2

) + (b
2

) + (b
2

(

+ 2a 2 b 2 + b 2 − c 2
2

2

−c2
−c2

Đúng với mọi a, b, c.

) + (c
2

) + (c
2

)

2

(

+ 2b 2 c 2 + c 2 − a 2

)

2

+ 2a 2 c 2

− 2a 2 bc − 2b 2 ac − 2c 2 ab ≥ 0
2

2

−a2
−a2

)

2

+ (a 2 b 2 + b 2 c 2 − 2b 2 ac ) + (b 2 c 2 + c 2 a 2 − 2c 2 ab)

) + ( ab − bc )
2

+ ( a 2 b 2 + c 2 a 2 − 2a 2 ab) ≥ 0
2

+ ( bc − ac ) + ( ab − ac ) ≥ 0
2

Phương pháp 2 : Dùng phép biến đổi tương đương
Sưu tầm và tuyển chọn

3

2


19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com
Kiến thức:
Ta biến đổi bất đẳng thức cần chứng minh tương đương với bất đẳng thức đúng
hoặc bất đẳng thức đã được chứng minh là đúng.
Nếu A < B ⇔ C < D , với C < D là một bất đẳng thức hiển nhiên, hoặc đã biết là đúng thì có
bất đẳng thức A < B .

Chú ý các hằng đẳng thức sau:

( A + B ) 2 = A 2 + 2 AB + B 2
( A + B + C ) 2 = A 2 + B 2 + C 2 + 2 AB + 2 AC + 2 BC
( A + B ) 3 = A 3 + 3 A 2 B + 3 AB 2 + B 3

Ví dụ 1: Cho a, b, c, d,e là các số thực chứng minh rằng
b2
≥ ab
4
b) a 2 + b 2 + 1 ≥ ab + a + b
c) a 2 + b 2 + c 2 + d 2 + e 2 ≥ a( b + c + d + e )

a) a 2 +

Giải:
b2
2
≥ ab ⇔ 4a 2 + b 2 ≥ 4ab ⇔ 4a 2 − 4a + b 2 ≥ 0 ⇔ ( 2a − b ) ≥ 0
4
b2
(BĐT này luôn đúng). Vậy a 2 + ≥ ab (dấu bằng xảy ra khi 2a=b)
4
2
2
2
b) a + b + 1 ≥ ab + a + b ⇔ 2(a + b 2 + 1 ) > 2(ab + a + b)
⇔ a 2 − 2ab + b 2 + a 2 − 2a + 1 + b 2 − 2b + 1 ≥ 0
⇔ (a − b) 2 + (a − 1) 2 + (b − 1) 2 ≥ 0
Bất đẳng thức cuối đúng.

a) a 2 +

Vậy a 2 + b 2 + 1 ≥ ab + a + b . Dấu bằng xảy ra khi a=b=1
c) a 2 + b 2 + c 2 + d 2 + e 2 ≥ a( b + c + d + e ) ⇔ 4( a 2 + b 2 + c 2 + d 2 + e 2 ) ≥ 4a( b + c + d + e )

(

) (

) (

) (

)

⇔ a 2 − 4ab + 4b 2 + a 2 − 4ac + 4c 2 + a 2 − 4ad + 4d 2 + a 2 − 4ac + 4c 2 ≥ 0
⇔ ( a − 2b ) 2 + ( a − 2c ) 2 + ( a − 2d ) 2 + ( a − 2c ) 2 ≥ 0

Bất đẳng thức đúng vậy ta có điều phải chứng minh
Ví dụ 2: Chứng minh rằng: ( a10 + b10 )( a 2 + b 2 ) ≥ ( a 8 + b 8 )( a 4 + b 4 )
Giải:

(a

)(
(

) (

)(

)

+ b10 a 2 + b 2 ≥ a 8 + b 8 a 4 + b 4 ⇔ a 12 + a 10 b 2 + a 2 b10 + b12 ≥ a 12 + a 8 b 4 + a 4 b 8 + b12
⇔ a 8 b 2 a 2 − b 2 + a 2 b 8 b 2 − a 2 ≥ 0 ⇔ a2b2(a2-b2)(a6-b6) ≥ 0
⇔ a2b2(a2-b2)2(a4+ a2b2+b4) ≥ 0
10

)

(

)

Bất đẳng thứccuối đúng vậy ta có điều phải chứng minh
Ví dụ 3: cho x.y =1 và x 〉 y

Chứng minh

x2 + y2
≥2 2
x− y

x2 + y2
≥ 2 2 vì :x 〉 y nên x- y 〉 0 ⇒ x2+y2 ≥ 2 2 ( x-y)
Giải:
x− y
2
⇒ x +y2- 2 2 x+ 2 2 y ≥ 0 ⇔ x2+y2+2- 2 2 x+ 2 2 y -2 ≥ 0
⇔ x2+y2+( 2 )2- 2 2 x+ 2 2 y -2xy ≥ 0 vì x.y=1 nên 2.x.y=2
⇒ (x-y- 2 )2 ≥ 0 Điều này luôn luôn đúng . Vậy ta có điều phải chứng minh

Ví dụ 4: Chứng minh rằng:
a/ P(x,y)= 9 x 2 y 2 + y 2 − 6 xy − 2 y + 1 ≥ 0 ∀x, y ∈ R
Sưu tầm và tuyển chọn

4


19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com
b/ a 2 + b 2 + c 2 ≤ a + b + c
(gợi ý :bình phương 2 vế)
c/ Cho ba số thực khác không x, y, z thỏa mãn:
x. y.z = 1

1 1 1
 + + < x+ y+z
 x y z

Chứng minh rằng :có đúng một trong ba số x,y,z lớn hơn 1
Giải: Xét (x-1)(y-1)(z-1)=xyz+(xy+yz+zx)+x+y+z-1
1

1

1

1

1

1

1

1

1

=(xyz-1)+(x+y+z)-xyz( x + y + z )=x+y+z - ( + + ) > 0 (vì x + y + z < x+y+z
x y z
theo gt)
⇒ 2 trong 3 số x-1 , y-1 , z-1 âm hoặc cả ba sỗ-1 , y-1, z-1 là dương.
Nếu trường hợp sau xảy ra thì x, y, z >1 ⇒ x.y.z>1 Mâu thuẫn gt x.y.z=1 bắt
buộc phải xảy ra trường hợp trên tức là có đúng 1 trong ba số x ,y ,z là số lớn hơn 1
a

b

c

Ví dụ 5: Chứng minh rằng : 1 < a + b + b + c + a + c < 2
Giải:

Ta có :

1
1
a
a
>

>
(1)
a+b a+b+c
a+b a+b+c
b
b
c
c
: b + c > a + b + c (2) , a + c > a + b + c (3)

a+b< a+b+c⇒

Tương tự ta có

Cộng vế theo vế các bất đẳng thức (1), (2), (3), ta được :
a
b
c
+
+
> 1 (*)
a+b b+c a+c
a
a+c
Ta có : a < a + b ⇒ a + b < a + b + c (4)
b
a+b
Tương tự : b + c < a + b + c (5) ,

c
c+b
<
c+a a+b+c

( 6)

Cộng vế theo vế các bất đẳng thức (4), (5), (6), ta được :
a
b
c
+
+
<2
a+b b+c a+c

(**)
a

b

c

Từ (*) và (**) , ta được : 1 < a + b + b + c + a + c < 2 (đpcm)
Phương pháp 3:
Dùng bất đẳng thức phụ
Kiến thức:
a) x 2 + y 2 ≥ 2 xy
2
2
b) x + y ≥ xy dấu( = ) khi x = y = 0
c) ( x + y ) 2 ≥ 4 xy
a
b

b
a

d) + ≥ 2
Ví dụ 1 Cho a, b ,c là các số không âm chứng minh rằng
(a+b)(b+c)(c+a) ≥ 8abc
Giải: Dùng bất đẳng thức phụ: ( x + y ) 2 ≥ 4 xy
Sưu tầm và tuyển chọn

5


19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com

( a + b ) 2 ≥ 4ab ; ( b + c ) 2 ≥ 4bc ; ( c + a ) 2 ≥ 4ac
⇒ ( a + b ) 2 ( b + c ) 2 ( c + a ) 2 ≥ 64a 2 b 2 c 2 = ( 8abc ) 2 ⇒ (a+b)(b+c)(c+a) ≥ 8abc

Tacó

Dấu “=” xảy ra khi a = b = c
Phương pháp 4:
Bất đẳng thức Cô sy
Kiến thức:
a/ Với hai số không âm : a, b ≥ 0 , ta có: a + b ≥ 2
b/ Bất đẳng thức mở rộng cho n số không âm :

ab .

Dấu “=” xảy ra khi a=b

a1 + a 2 + ... + a n ≥ n n a1 a 2 ..a n
n

 a + a 2 + ... + a n 
⇔ a1 a 2 ..a n ≤  1

n


Dấu “=” xảy ra khi a1 = a 2 = ... = a n

Chú ý : ta dùng bất đẳng thức Côsi khi đề cho biến số không âm.
Ví dụ 1 : Giải phương trình :

Giải : Nếu đặt t =2x

2x
4x
2x
3
+
+
=
x
x
x
x
2
4 +1 2 +1 2 + 4

 a = 2x
thì pt trở thành pt bậc 6 theo t nên ta đặt 
, a, b > 0
x
 b = 4
a

b

1

3

Khi đó phương trình có dạng : b + 1 + a + 1 + a + b = 2
Vế trái của phương trình:

 a
  b
  1

=
+ 1 + 
+ 1 + 
+ 1 − 3
 b +1   a +1   a + b 
 a + b +1  a + b +1  a + b +1
=
+
+
−3
 b +1   a +1   a + b 
1
1 
 1
= ( a + b + c)
+
+
−3
 b +1 a +1 a + b 
[ ( b + 1) + ( a + 1) + ( a + b ) ] 1 + 1 + 1  − 3
 b +1 a +1 a + b 


1 3
3
3
3 ( a + 1)( b + 1)( a + b ) .
−3 =
3 ( a + 1)( b + 1)( a + b )
2
2

Vậy phương trình tương đương với :
a + 1 = b + 1 = a + b ⇔ a = b = 1 ⇔ 2x = 4x = 1 ⇔ x = 0 .
x

y

z

Ví dụ 2 : Cho x, y , z > 0 và x + y + z = 1. Tìm GTLN của P = x + 1 + y + 1 + z + 1
1

1

1

Giải : P = 3- ( x + 1 + y + 1 + z + 1 ) = 3 – Q. Theo BDT Côsi , nếu a, b, c > 0 thì

Sưu tầm và tuyển chọn

6


19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com
a + b + c ≥ 3 3 abc
1 1 1
1
+ + ≥ 33
a b c
abc
1 1 1
⇒ ( a + b + c ) + +  ≥ 9
a b c
1 1 1
9
⇒ + + ≥
a b c a +b+c
1
1
1
9
Suy ra Q = x + 1 + y + 1 + z + 1 ≥ 4 ⇒
3
1
Vậy max P = 4 .khi x = y = z = 3 .

Ví dụ 3:

9

Cho a, b, c >0 . Chứng minh rằng:

Giải: Áp dụng bất đẳng thức Côsi ta có :
a 2 + +bc ≥ 2a bc ⇒

9

1
1
1
a+b+c
+ 2
+ 2

2abc
a + bc b + ac c + ab
2

2
1
1 1
1 

≤  + 
a + +bc a bc 2  ab ac 
2

Tương tự :
2
1
1 1
1 

≤  + 
b + + ac b ac 2  bc ab 
2
1
1 1
1

≤  + 
2
c + + ab c ab 2  ac bc 
2
2
2
a+b+c
⇒ 2
+ 2
+ 2

2abc
a + bc b + + ac c + + ab
2

Dấu “=” xảy ra khi a = b = c.
a

b

c

Ví dụ 4 : CMR trong tam giác ABC : b + c − a + c + a − b + a + b − c ≥ 3 (*)
Giải : Theo bất đẳng thức Côsi :

a
b
c
abc
+
+
≥ 33
(1)
b + c − a c + a −b a +b −c
(b + c − a )(c + a − b)(a + b − c )

Cũng theo bất đẳng thức Côsi :
(b + c − a )(c + a − b) ≤

1
(b + c − a + c + a − b) = c (2)
2

Viết tiếp hai BDT tương tự (2) rồi nhân với nhau sẽ được
(b + c − a )(c + a − b)(a + b − c) ≤ abc
abc

≥ 1 (3)
(b + c − a )(c + a − b)(a + b − c )

Từ (1),(3) suy ra (*). Dấu “=” xảy ra khi a = b = c hay ABC là đều .
Ví dụ 5:

0< a≤ b≤ c
x y z
( a + c)
Cho 
. Chứng minh rằng: ( + by + cz )  + +  ≤
4ac
a b c
 0 < x, y , z
Giải: Đặt f ( x) = x 2 − (a + c) x + ac = 0 có 2 nghiệm a,c
Mà: a ≤ b ≤ c ⇒ f (b) ≤ 0 ⇔ b 2 − (a + c)b + ac ≤ 0

Sưu tầm và tuyển chọn

3

-Q ≤ − 4 nên P = 3 – Q ≤ 3- 4 = 4

7

2

( x + y + z) 2


19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com
ac
y
≤ a + c ⇔ yb + ac ≤ ( a + c ) y
b
b
x
y
z

⇒  xa + ac  + ( yb + ac ) + ( zc + ac ) ≤ ( a + c ) x + ( a + c ) y + ( a + c) z
a
b
c


x y z
⇒ xa + yb + zc + ac + +  ≤ ( a + c )( x + y + z )
a b c
⇔b+

Theo bất đẳng thức Cauchy ta có:
⇒2

( xa + yb + zc ) ac x + y + z  ≤ ( a + c )( x + y + z )
a

b

c

x y z
2
2
⇔ 4( xa + yb + zc ) ac + +  ≤ ( a + c ) ( x + y + z )
a b c
 x y z  ( a + c)
⇔ ( xa + yb + zc ) ac + +  ≤
4ac
a b c

Phương pháp 5
Kiến thức:
Cho 2n số thực ( n ≥ 2 ):

2

( x + y + z ) 2 (đpcm)

Bất đẳng thức Bunhiacopski
a1 , a 2 ,...a n , b1 , b2 ,..., bn .

Ta luôn có:

(a1b1 + a 2 b2 + ... + a n bn ) ≤ (a12 + a 22 + ... + a n2 )(b12 + b22 + ... + bn2 )
2

a

a

a

n
1
2
Dấu “=” xảy ra khi ⇔ b = b = .... = b
1
2
n

b1

b2

bn

Hay a = a = .... = a (Quy ước : nếu mẫu = 0 thì tử = 0 )
1
2
n
Chứng minh:
 a = a 2 + a 2 + ... + a 2
1
2
n

Đặt 

2
2
2
 b = b1 + b2 + ... + bn

• Nếu a = 0 hay b = 0: Bất đẳng thức luôn đúng.
• Nếu a,b > 0:
Đặt: α i =

ai
b
, β i = i ( i = 1,2,...n ) ,
a
b

Mặt khác: α i β i
Suy ra:
Lại có:
Suy ra:



Thế thì: α 12 + α 22 + ... + α n2 = β 12 + β 22 + ... + β n2

1 2
(α i + β i2 )
2

1 2
1
(α1 + α 22 + .... + α n2 ) + ( β12 + β 22 + ... + β n2 ) ≤ 1
2
2
⇒ a1b1 + a 2 b2 + ... + a n bn ≤ a.b

α1 β1 + α 2 β 2 + ... + α n β n ≤

a1b1 + a 2 b2 +... + a n bn ≤ a1b1 + a 2 b2 +... + a n bn

(a1b1 + a 2 b2 + ... + a n bn ) 2 ≤ (a12 + a 22 + ... + a n2 )(b12 + b22 + ... + bn2 )

 α i = β i ( ∀i = 1,2,..., n )
a
a
a
⇔ 1 = 2 = .... = n
b1 b2
bn
α 1 β 1 ....α n β n cùng dáu

Dấu”=” xảy ra ⇔ 
Ví dụ 1 :

Chứng minh rằng: ∀x ∈R , ta có:

sin 8 x + cos 8 x ≥

Giải: Ta có: sin 2 x + cos 2 x = 1, ∀x ∈ R
Theo bất đẳng thức Bunhiacopski, ta có:
Sưu tầm và tuyển chọn

8

1
8


19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com
1 = (sin 2 x.1 + cos 2 x.1) ≤ (sin 4 x + cos 4 x )(12 + 12 )
1
≤ sin 4 x + cos 4 x
2
2
1
⇒ ≤ (sin 4 x + cos 4 x )
4


Sử dụng bất đẳng thức Bunhiacopski một lần nữa:
2
1
≤ (sin 4 x.1 + cos 4 x.1)
4
1
⇔ ≤ (sin 8 x + cos 8 x )(12 + 12 )
4
1
⇔ (sin 4 x + cos 4 x ) ≥
8



Ví dụ 2: Cho tam giác ABC có các góc A,B,C nhọn. Tìm GTLN của:
P = 1 + tan A. tan B + 1 + tan B. tan C + 1 + tan C. tan A

Giải:
* Bất đẳng thức Bunhiacopski mở rộng
Cho m bộ số, mỗi bộ số gồm n số không âm:
Thế thì:

( a i , bi ,..., ci )(i =1,2,...., m)

(a1 a 2 ...a m + b1b2 ...bm + ... + c1c 2 ...c m ) 2 ≤ (a1m + b1m + ... + c1m )(a 2m + b2m + ... + c 2m )(a mm + bmm + ... + c mm )
Dấu”=” xảy ra ⇔ ∃ bô số (a,b,….,c) sao cho: với mỗi i = 1,2,…,m thì ∃ t i sao
cho: a = t i ai , b = t i bi ,..., c = t i ci , Hay a1 : b1 : ... : c1 = a 2 : b2 : ... : c 2 = a n : bn : ...cn

Ví dụ 1: Cho

a12 + a 22 + ... + a n2 = 3

n ∈ Z,n ≥ 2


Chứng minh rằng:

a
a1 a 2
+
+ .... + n < 2
2
3
n +1

Giải:
∀k ∈N


1
<
k2

*

ta có:
1

1
k−
2



1
<
k2

1
k2 −

1
4

=

1
1 
1

 k −  k + 
2 
2


1
k+

1
2



 1

1
1
1  1
1   1
1 
1


⇒ 2 + 2 + ... + 2 < 

+

+
...
+

5   5
7 
2
3
n
3
n− 1 n+ 1 


 2
2  2
2

2
2
1
1
2
=

<
3
1 3
2 n+
2

Do đó theo bất đẳng thức Bunhiacopski:
a
a1 a 2
+
+ .... + n ≤ a12 + a 22 + ... + a n2
2
3
n +1

Ví dụ 2:

1
1
1
2
+ 2 + ... + 2 < 3
< 2 (đpcm)
2
3
2
3
n

Cho 4 số a,b,c,d bất kỳ chứng minh rằng:
( a + c) 2 + (b + d ) 2 ≤ a 2 + b 2 + c 2 + d 2

Giải: Dùng bất đẳng thức Bunhiacopski: Tacó
Sưu tầm và tuyển chọn

9

ac+bd ≤ a 2 + b 2 . c 2 + d 2


19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com
mà ( a + c ) 2 + ( b + d ) 2 = a 2 + b 2 + 2( ac + bd ) + c 2 + d 2 ≤ ( a 2 + b 2 ) + 2 a 2 + b 2 . c 2 + d 2 + c 2 + d 2
⇒ (a + c) 2 + (b + d ) 2 ≤ a 2 + b 2 + c 2 + d 2

Ví dụ 3: Chứng minh rằng : a 2 + b 2 + c 2 ≥ ab + bc + ac
Giải: Dùng bất đẳng thức Bunhiacopski
Cách 1: Xét cặp số (1,1,1) và (a,b,c) ta có (12 + 12 + 12 )(a 2 + b 2 + c 2 ) ≥ (1.a + 1.b + 1.c ) 2
⇒ 3 ( a 2 + b 2 + c 2 ) ≥ a 2 + b 2 + c 2 + 2( ab + bc + ac )
⇒ a 2 + b 2 + c 2 ≥ ab + bc + ac Điều phải chứng minh Dấu bằng xảy ra khi a=b=c
Phương pháp 6:
Kiến thức:

Bất đẳng thức Trê- bư-sép

 a1 ≤ a2 ≤ ..... ≤ an
a)Nếu 
 b1 ≤ b2 ≤ ..... ≤ bn

thì

a1 + a 2 + ... + a n b1 + b2 + .... + bn a1b1 + a 2 b2 + .... + a n bn
.

n
n
n
a1 = a 2 = .... = a n
 1 = b2 = .... = bn

Dấu ‘=’ xảy ra khi và chỉ khi b

 a1 ≤ a2 ≤ ..... ≤ an
b)Nếu 
thì
 b1 ≥ b2 ≥ ..... ≥ bn
a1 + a 2 + ... + a n b1 + b2 + .... + bn a1b1 + a 2 b2 + .... + a n bn
.

n
n
n
a1 = a 2 = .... = a n
 1 = b2 = .... = bn

Dấu ‘=’ xảy ra khi và chỉ khi b

Ví dụ 1: Cho ∆ABC có 3 góc nhọn nội tiếp đường tròn bán kính R = 1 và
sin A. sin 2a + sin B. sin 2 B + sin C. sin 2C 2 S
=
.
sin A + sin B + sin C
3

S là diện tích tan giác. chứng minh rằng ∆ABC là tam giác đều.
Giải: Không giảm tính tổng quát ta giả sư

0< A≤B≤C <

π
. Suy
2

ra:

 sin A ≤ sin B ≤ sin C

 sin 2a ≤ sin 2B ≤ sin 2C

Áp dụng BĐT trebusep ta được:
( sin A + sin B + sin C )( sin 2 A + sin 2 B + sin 2C ) ≥
≥ 3( sin A. sin 2 A + sin B. sin 2 B + sin C. sin 2C )


sin A. sin 2 A + sin B. sin 2 B + sin C. sin 2C 1
≤ (sin 2 A + sin 2 B + sin 2C )
sin A + sin B + sin C
3

sin A = sin B = sin C

Dấu ‘=’ xảy ra ⇔ sin 2 A = sin 2 B = sin 2C ⇔ ∆ABC dêu


Mặt khác:

Sưu tầm và tuyển chọn

10

.


19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com
sin 2 A + sin 2 B + sin 2C = 2 sin( A + B ). cos( A − B ) + sin 2C

= 2 sin C [cos( A − B ) + cos C ] = 2 sin C [cos( A − B ) − cos( A + B )]
= 2 sin C.2 sin A. sin B = 4 sin A sin B sin C
= (2 R sin A)(2 R sin B ). sin C = a.b. sin C = 2 S

(2)

Thay (2) vào (1) ta có
Dấu

sin A. sin 2a + sin B. sin 2 B + sin C. sin 2C 2S

.
sin A + sin B + sin C
3
‘=’ xảy ra ⇔ ∆ ABC đều.

Ví dụ 2(HS tự giải):
a/

Cho a,b,c>0 và a+b+c=1

b/
c/

Cho x,y,z>0 và x+y+z=1
Cho a>0 , b>0, c>0

CMR:

1 1 1
+ + ≥9
a b c
CMR:x+2y+z ≥ 4(1 − x)(1 − y )(1 − z )

CMR:

a
b
c
3
+
+

b+c c+a a+b 2

d)Cho x ≥ 0 ,y ≥ 0 thỏa mãn 2 x − y = 1

;CMR:

x+y ≥

1
5

Ví dụ 3: Cho a>b>c>0 và a 2 + b 2 + c 2 = 1 . Chứng minh rằng
Giải:

a3
b3
c3
1
+
+

b+c a+c a+b 2


a2 ≥ b2 ≥ c2
Do a,b,c đối xứng ,giả sử a ≥ b ≥ c ⇒  a ≥ b ≥ c
 b + c a + c a + b

Áp dụng BĐT Trê- bư-sép ta có
a
b
c
a2 + b2 + c2  a
b
c  1 3 1
+ b2.
+ c2.

.
+
+
= . =
b+c
a+c
a+b
3
b+c a+c a+b 3 2 2
1
a3
b3
c3
1
+
+

Vậy
Dấu bằng xảy ra khi a=b=c=
3
b+c a+c a+b 2
a2.

Ví dụ 4:

Cho a,b,c,d>0 và abcd =1 .Chứng minh rằng :

a + b + c + d 2 + a( b + c ) + b( c + d ) + d ( c + a ) ≥ 10
Giải: Ta có a 2 + b 2 ≥ 2ab
c 2 + d 2 ≥ 2cd
1
1 1
Do abcd =1 nên cd =
(dùng x + ≥ )
ab
x 2
1
Ta có a 2 + b 2 + c 2 ≥ 2(ab + cd ) = 2(ab + ) ≥ 4 (1)
ab
Mặt khác: a( b + c ) + b( c + d ) + d ( c + a ) = (ab+cd)+(ac+bd)+(bc+ad)
1  
1  
1 

=  ab +  +  ac +  +  bc +  ≥ 2 + 2 + 2
ab  
ac  
bc 

2
2
2
2
Vậy a + b + c + d + a( b + c ) + b( c + d ) + d ( c + a ) ≥ 10
2

2

2

Phương pháp7
Kiến thức:
Sưu tầm và tuyển chọn

Bất đẳng thức Bernouli

11


19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com
a)Dạng nguyên thủy: Cho a ≥ -1, 1 ≤

n ∈ Z thì (1 + a )

a =0

n

≥ 1 + na .

Dấu ‘=’ xảy ra khi

và chỉ khi 
n =1

b) Dạng mở rộng:
- Cho a > -1, α ≥ 1 thì (1 + a ) α ≥ 1 + na . Dấu bằng xảy ra khi và chỉ khi a = 0.
a =0
- cho a ≥ −1,0 < α < 1 thì (1 + a ) α ≤ 1 + na . Dấu bằng xảy ra khi va chỉ khi α=1 .


a b + b a > 1, ∀a, b > 0 .

Ví dụ 1 : Chứng minh rằng
Giải
- Nếu a ≥ 1 hay b ≥ 1 thì BĐT luôn đúng
- Nếu 0 < a,b < 1
Áp dụng BĐT Bernouli:
b
b
b(1 − a ) a + b
1
 1− a 
= 1+
<1+
<
 
a





a 

a

a

a
⇒ ab >
.
a +b

Chứng minh tương tự: b a

>

b
.
a+b

Suy ra a b + b a > 1

(đpcm).

Ví dụ 2: Cho a,b,c > 0.Chứng minh rằng
a5 + b5 + c5  a + b + c 
≥

3
3



5

.

(1)

Giải
5

5

5

(1) ⇔  3a  +  3b  +  3c  ≥ 3
a+b+c a+b+c a+b+c

Áp dụng BĐT Bernouli:

5( b + c − 2a )
 3a 
 b + c − 2a 

 = 1 +
 ≥1+
a
+
b
+
c
a
+
b
+
c
a +b+c




5

5

(2)

Chứng minh tương tự ta đuợc:
5( c + a − 2b )
 3b


 ≥1+
a
+
b
+
c
a +b +c


5

5( a + b − 2c )
 3c


 ≥1+
a
+
b
+
c
a +b +c



(3)

5

(4)

Cộng (2) (3) (4) vế theo vế ta có
5

5

5

 3a   3b   3c 

 +
 +
 ≥ 3 ⇒ (đpcm)
a+b+c a+b+c a+b+c

Chú ý: ta có bài toán tổng quát sau đây:
“Cho a1 , a 2 ,...a n > 0; r ≥1. Chứng minh rằng
r

a1r + a 2r + .... + a nr  a1 + a 2 + .... + a n 
 .
≥ 
n
n


Dấu ‘=’ ⇔ a1 = a 2 = .... = a n .(chứng minh

tương tự bài trên).
Ví dụ 3: Cho 0 ≤ x, y, z ≤1 . Chứng minh rằng

(2

x

+ 2 y + 2 z )( 2 − x + 2 − y + 2 − z ) ≤

81
.
8

Giải
Đặt a = 2 x , b = 2 y , c = 2 z (1 ≤ a, b, c ≤ 2 ) .
Sưu tầm và tuyển chọn

12


19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com
1 ≤ a ≤ 2 ⇒ ( a − 1)( a − 2 ) ≤ 0
⇒ a 2 − 3a + 2 ≤ 0 ⇒ a +

2
≤ 3 (1)
a

Chứng minh tương tự:
2
≤3
b
2
c+ ≤3
c

b+

( 2)
(3)

Cộng (1) (2) (3) vế theo vế ta được
 1 1 1  côsi
 1 1 1
9 ≥ ( a + b + c ) + 2 + +  ≥ 2 ( a + b + c ) 2 + + 
a b c
a b c


81
 1 1 1
≥ (a + b + c) + +  ⇒ (đpcm)
8
a b c

Chú ý: Bài toán tổng quát dạng này
“ Cho n số x1 , x 2 ,...., x n ∈[ a, b] , c > 1
Ta luôn có:

(c

x1

+ c + .... + c
x2

xn

)( c

Phương pháp 8:

− x1

+c

− x2

+ .... + c

− xn

) ≤ [ n( c

+ cb )
4c a + b
a

]

2

Sử dụng tính chất bắc cầu

Kiến thức: A>B và B>C thì A>C
Ví dụ 1: Cho a, b, c ,d >0 thỏa mãn a> c+d , b>c+d
Chứng minh rằng ab >ad+bc
Giải:
a > c + d
b > c + d

a − c > d > 0
⇒ 

b − d > c > 0
ab-ad-bc+cd >cd ⇔ ab> ad+bc

Tacó 


(a-c)(b-d) > cd
(điều phải chứng minh)

5
1 1 1
1
2
2
2
+ + <
Ví dụ 2: Cho a,b,c>0 thỏa mãn a + b + c = . Chứng minh
a b c abc
3
2
2
2
2
Giải: Ta có :( a+b- c) = a +b +c +2( ab –ac – bc) 〉 0
1 2 2 2
( a +b +c )
2
5
1 1 1
⇒ ac+bc-ab ≤ 〈 1 Chia hai vế cho abc > 0 ta có
+ − 〈
6
a b c
⇒ ac+bc-ab 〈

1
abc

Ví dụ 3: Cho 0 < a,b,c,d <1 Chứng minh rằng (1-a).(1-b) ( 1-c).(1-d) > 1-a-b-c-d
Giải: Ta có (1-a).(1-b) = 1-a-b+ab
Do a>0 , b>0 nên ab>0 ⇒ (1-a).(1-b) > 1-a-b
(1)

Do c <1 nên 1- c >0 ta có (1-a).(1-b) ( 1-c) > 1-a-b-c
⇒ (1-a).(1-b) ( 1-c).(1-d) > (1-a-b-c) (1-d) =1-a-b-c-d+ad+bd+cd
⇒ (1-a).(1-b) ( 1-c).(1-d) > 1-a-b-c-d (Điều phải chứng minh)
Ví dụ 4: Cho 0 Sưu tầm và tuyển chọn

13


19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com
Giải:
Do a < 1 ⇒ a 2 < 1 và
Ta có (1 − a 2 ).(1 − b ) < 0 ⇒ 1-b- a 2 + a 2 b > 0 ⇒ 1+ a 2 b 2 > a 2 + b
mà 0< a,b <1 ⇒ a 2 > a 3 , b 2 > b 3
Từ (1) và (2) ⇒ 1+ a 2 b 2 > a 3 + b 3 . Vậy a 3 + b 3 < 1+ a 2 b 2
Tương tự b 3 + c 3 ≤ 1 + b 2 c
c 3 + a3 ≤ 1 + c2a
Cộng các bất đẳng thức ta có : 2a 3 + 2b 3 + 2c 3 ≤ 3 + a 2 b + b 2 c + c 2 a
Ví dụ 5 Chứng minh rằng : Nếu a 2 + b 2 = c 2 + d 2 = 1998 thì ac+bd =1998
Giải:
Ta có (ac + bd) 2 + (ad – bc ) 2 = a 2 c 2 + b 2 d 2 + 2abcd + a 2 d 2 + b 2 c 2 - 2abcd =
= a2(c2+d2)+b2(c2+d2) =(c2+d2).( a2+ b2) = 19982
rõ ràng (ac+bd)2 ≤ ( ac + bd ) 2 + ( ad − bc ) 2 = 1998 2 ⇒ ac + bd ≤ 1998
Ví dụ 6 (HS tự giải) :
a/ Cho các số thực : a1; a2;a3 ….;a2003 thỏa mãn : a1+ a2+a3 + ….+a2003 =1
2

c hứng minh rằng : a 12 + a 22 + a32 + .... + a 2003

b/ Cho a;b;c ≥ 0 thỏa mãn :a+b+c=1
1
a

1
b

1
2003

1
c

Chứng minh rằng: ( − 1).( − 1).( − 1) ≥ 8

Phương pháp 9:
Dùng tính chất của tỷ số
Kiến thức
1) Cho a, b ,c là các số dương thì
a
a a+c
> 1 thì >
b
b b+c
a
a a+c
b – Nếu < 1 thì <
b b+c
b

a – Nếu

2) Nếu b,d >0 thì từ

a c
a a+c c
< ⇒ <
<
b d
b b+d d

`

Ví dụ 1: Cho a,b,c,d > 0 .Chứng minh rằng
1<

a
b
c
d
+
+
+
<2
a+b+c b+c+d c+d +a d +a+b

Giải: Theo tính chất của tỉ lệ thức ta có
a
a
a+d
<1⇒
<
a+b+c
a+b+c a+b+c+d
a
a
>
Mặt khác :
a+b+c a+b+c+d

(1)
(2)

Từ (1) và (2) ta có

a
a
a+d
<
<
a+b+c+d
a+b+c a+b+c+d

Sưu tầm và tuyển chọn

(3)
14


19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com
Tương tự ta có
b
b
b+a
<
<
a+b+c+d b+c+d a+b+c+d
c
c
b+c
<
<
a+b+c+d c+d +a a+b+c+d
d
d
d +c
<
<
a+b+c+d d +a+b a+b+c+d

(4)
(5)
(6)

cộng vế với vế của (3); (4); (5); (6) ta có
a
b
c
d
+
+
+
< 2 điều phải chứng minh
a+b+c b+c+d c+d +a d +a+b
a c
a ab + cd c
<
Ví dụ 2 :Cho: < và b,d > 0 .Chứng minh rằng < 2
b d
b b +d2 d
a c
ab cd
ab ab + cd cd c
<
=
Giải: Từ < ⇒ 2 < 2 ⇒ 2 < 2
b d
b
d
b
b +d2 d2 d
a ab + cd c
<
Vậy
<
điều phải chứng minh
b b2 + d 2 d
1<

Ví dụ 3 : Cho a;b;c;dlà các số nguyên dương thỏa mãn : a+b = c+d =1000
a
c

tìm giá trị lớn nhất của +

b
d

Giải: Không mất tính tổng quát ta giả sử :

a
b
a
b

Từ : ≤
c
d
c
d

a
≤ 1 vì a+b = c+d
c



a a+b b


c c+d d

b
a b
≤ 998 ⇒ + ≤ 999
d
c d
a b 1 999
b/Nếu: b=998 thì a=1 ⇒ + = +
Đạt giá trị lớn nhất khi d= 1; c=999
c d c
d
a b
1
Vậy giá trị lớn nhất của + =999+
khi a=d=1; c=b=999
c d
999

a/ Nếu :b ≤ 998 thì

Phương pháp 10: Phương pháp làm trội
Kiến thức:
Dùng các tính bất đẳng thức để đưa một vế của bất đẳng thức về dạng tính được
tổng hữu hạn hoặc tích hữu hạn.
(*) Phương pháp chung để tính tổng hữu hạn : S = u1 + u2 + .... + un
Ta cố gắng biến đổi số hạng tổng quát u k về hiệu của hai số hạng liên tiếp nhau:
u k = ak − ak +1
Khi đó :S = ( a1 − a2 ) + ( a2 − a3 ) + .... + ( an − an+1 ) = a1 − an+1
(*) Phương pháp chung về tính tích hữu hạn: P = u1u2 ....un
a

k
Biến đổi các số hạng u k về thương của hai số hạng liên tiếp nhau: u k = a
k +1

a a

a

a

1
2
n
1
Khi đó P = a . a ..... a = a
2
3
n +1
n +1

Sưu tầm và tuyển chọn

15


19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com
Ví dụ 1: Với mọi số tự nhiên n >1 chứng minh rằng
1
1
1
1
3
<
+
+ .... +
<
2 n +1 n + 2
n+n 4
1
1
1
>
=
Giải: Ta có
với k = 1,2,3,…,n-1
n + k n + n 2n
1
1
1
1
1
n 1
+
+ ... +
>
+ ... +
=
=
Do đó:
n +1 n + 2
2n 2n
2 n 2n 2

Ví dụ 2: Chứng minh rằng:

(

)

1
1
1
+
+ .... +
> 2 n +1 −1
Với n là số nguyên
2
3
n
1
2
2
=
>
= 2 k +1 − k
Giải: Ta có
k 2 k
k + k +1
1+

(

)

Khi cho k chạy từ 1 đến n ta có
1 > 2 ( 2 − 1)

(

1
>2 3− 2
2

)

………………

(

1
> 2 n +1 − n
n

)

Cộng từng vế các bất đẳng thức trên ta có 1 +
n

Ví dụ 3: Chứng minh rằng
1

1

1

∑k
k =1

1

2

<2

(

∀n ∈ Z

1

Giải: Ta có k 2 < k ( k − 1) = k − 1 − k
Cho k chạy từ 2 đến n ta có
1
1
< 1−
2
2
2
1 1 1
< −
32 2 3
.................
1
1
1
<

2
n
n −1 n
1 1
1
⇒ 2 + 2 + .... + 2 < 1
2 3
n
n

Vậy

1

∑k
k =1

2

<2

Phương pháp 11: Dùng bất đẳng thức trong tam giác
Kiến thức: Nếu a;b;clà số đo ba cạnh của tam giác thì : a;b;c> 0
Sưu tầm và tuyển chọn

16

)

1
1
1
+
+ .... +
> 2 n +1 −1
2
3
n


19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com
Và |b-c| < a < b+c ; |a-c| < b < a+c ; |a-b| < c < b+a
Ví dụ 1: Cho a;b;c là số đo ba cạnh của tam giác chứng minh rằng
1/ a2+b2+c2< 2(ab+bc+ac)
2/ abc>(a+b-c).(b+c-a).(c+a-b)
Giải
1/Vì a,b,c là số đo 3 cạnh của một tam giác nên ta có
0 < a < b + c

0 < b < a + c
0 < c < a + b


a 2 < a (b + c)
 2
b < b( a + c )
 c 2 < c ( a + b)




Cộng từng vế các bất đẳng thức trên ta có: a2+b2+c2< 2(ab+bc+ac)
2/ Ta có a > b-c  ⇒ a 2 > a 2 − (b − c) 2 > 0
b > a-c 
⇒ b 2 > b 2 − (c − a ) 2 > 0
c > a-b 
⇒ c 2 > c 2 − ( a − b) 2 > 0
Nhân vế các bất đẳng thức ta được

[

][

][

⇒ a 2b 2 c 2 > a 2 − ( b − c ) b 2 − ( c − a ) c 2 − ( a − b )
2

2

⇒ a 2b 2 c 2 > ( a + b − c ) ( b + c − a ) ( c + a − b )
⇒ abc > ( a + b − c ).( b + c − a ).( c + a − b )
2

2

2

]

2

Ví dụ2 (HS tự giải)
1/ Cho a,b,c là chiều dài ba cạnh của tam giác
Chứng minh rằng ab + bc + ca < a 2 + b 2 + c 2 < 2(ab + bc + ca)
2/Cho a,b,c là chiều dài ba cạnh của tam giác có chu vi bằng 2
Chứng minh rằng a 2 + b 2 + c 2 + 2abc < 2
Phương pháp 12:

Sử dụng hình học và tọa độ

Ví dụ 1:
Chứng minh rằng : c(a −c) + c(b −c) ≤ ab , ∀a ≥ b ≥ 0 và b ≥ c
Giải
Trong mặt phẳng Oxy, chọn u =( c, b −c ) ; v =( a −c , c )
u.v = c ( a −c ) + c (b −c )
Thì u = b , v = a ;
u
.
v
=
u
.
v
.
cos(
u
,
v
)
≤u . v
⇒ c ( a −c ) + c (b −c ) ≤ ab ⇒
Hơn nữa:
(ĐPCM)
Ví dụ 2:
Cho 2n số:
n


i =1

xi2 + yi2 ≥

xi ; y i , i =1,2,..., n

n

n

i =1

i =1

thỏa mãn: ∑ xi + ∑ yi = 1. Chứng minh rằng:

2
2

Giải:
Vẽ hình

y

MN

MK

Sưu tầm và tuyển chọn

H

17


19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com
M
1

x

O

x+y=1

Trong mặt phẳng tọa độ, xét:
M 1 ( x1 , y1 ) : M 2 ( x1 + x 2 , y1 + y 2 ) ;…; M n ( x1 +  + x n , y1 +  + y n )
Giả thiết suy ra
OM 1 =

x12 + y12

M n ∈ đường thẳng x + y = 1. Lúc đó:

,

M 1M 2 =

x 22 + y 22

Và OM 1 + M 1 M 2 + M 2 M 3


n



2
2

xi2 + yi2 ≥

i =1

,

M 2M 3 =

x32 + y 32

,…,

+  + M n −1 M n ≥ OM n ≥ OH =

M n −1 M n =

x n2 + y n2

2
2

⇒ (ĐPCM)

Phương pháp 13:

Đổi biến số

a
b
c
3
+
+
≥ (1)
b+c c+a a+b 2
y+z−x
z+x− y
x+ y−z
Giải: Đặt x=b+c ; y=c+a ;z= a+b ta có a=
; b=
;c=
2
2
2
y+z−x z+x− y x+ y−z
3
+
+

ta có (1) ⇔
2x
2y
2z
2
y z
x z
x y
y x
z x
z y
+ −1+ + −1+ + −1 ≥ 3 ⇔ ( + ) + ( + ) + ( + ) ≥ 6

x x
y y
z z
x y
x z
y z
y x
z y
z x
+ ≥ 2 nên ta có điều
+ ≥ 2;
Bất đẳng thức cuối cùng đúng vì ( x + y ≥ 2;
y z
x z

Ví dụ1: Cho a,b,c > 0 Chứng minh rằng

phải chứng minh
Ví dụ2:
Cho a,b,c > 0 và a+b+c <1. Chứng minh rằng
1
1
1
+ 2
+ 2
≥9
(1)
a + 2bc b + 2ac c + 2ab
Giải: Đặt x = a 2 + 2bc ; y = b 2 + 2ac ; z = c 2 + 2ab . Ta có x + y + z = ( a + b + c ) 2 < 1
1 1 1
(1) ⇔ x + y + z ≥ 9
Với x+y+z < 1 và x ,y,z > 0
1 1 1
1
Theo bất đẳng thức Côsi ta có: x + y + z ≥ 3. 3 xyz , và: x + y + z ≥ 3. 3
xyz
2



( x + y + z ). 1 + 1 + 1  ≥ 9 . Mà x+y+z < 1. Vậy
x y z




1 1 1
+ + ≥9
x y z

Ví dụ3: Cho x ≥ 0 , y ≥ 0 thỏa mãn 2 x − y = 1 CMR x + y ≥
Gợi ý: Đặt x = u ,
Sưu tầm và tuyển chọn

y =v

(đpcm)
1
5

⇒ 2u-v =1 và S = x+y = u 2 + v 2 ⇒ v = 2u-1

18


19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com
thay vào tính S min
Bài tập tự giải
1) Cho a > 0 , b > 0 , c > 0

CMR:

25a 16b
c
+
+
>8
b+c c+a a+b

(

)

2)Tổng quát m, n, p, q, a, b >0
CMR
ma
nb
pc
1
+
+

b+c c+a a+b 2

Phương pháp 14:

m + n + p − ( m + n + p)
2

Dùng tam thức bậc hai

Kiến thứ: Cho f(x) = ax2 + bx + c
Định lí 1:
f(x) >

a> 0
0, ∀ x ⇔ 
∆ < 0

a> 0
f (x) ≥ 0, ∀ x ⇔ 
∆ ≤ 0
a< 0
f (x) < 0, ∀ x ⇔ 
∆ < 0
a< 0
f (x) ≤ 0, ∀ x ⇔ 
∆ ≤ 0

Định lí 2:
Phương trình f(x) = 0 có 2 nghiệm x1 < α < x2 ⇔ a. f ( α ) < 0
Phương trình f(x) = 0 có 2 nghiệm :

 a. f ( α ) > 0

x1 < x2 < α ⇔  ∆ > 0
S
 <α
2
Phương trình f(x) = 0 có 2 nghiệm :

Sưu tầm và tuyển chọn

19


19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com


 a. f ( α ) > 0

α < x1 < x2 ⇔  ∆ > 0
S
 >α
2
Phương trình f(x) = 0 có 2 nghiệm

α < x1 < β < x 2
 x < α < x < β ⇔ f (α ). f ( β ) < 0.
2
 1

Ví dụ 1:Chứng minh rằng f ( x, y ) = x 2 + 5 y 2 − 4 xy + 2 x − 6 y + 3 > 0
Giải: Ta có (1) ⇔ x 2 − 2 x( 2 y − 1) + 5 y 2 − 6 y + 3 > 0

(1)

∆′ = ( 2 y − 1) − 5 y 2 + 6 y − 3
= 4 y2 − 4 y +1− 5y2 + 6 y − 3
2

= −( y − 1) − 1 < 0
Vậy f ( x, y ) > 0 với mọi x, y
2

Chứng minh rằng: f ( x, y ) = x 2 y 4 + 2( x 2 + 2). y 2 + 4 xy + x 2 > 4 xy 3

Ví dụ2:

Giải: Bất đẳng thức cần chứng minh tương đương với

(

)
(1 − y )

x 2 y 4 + 2 x 2 + 2 . y 2 + 4 xy + x 2 − 4 xy 3 > 0 ⇔ ( y 2 + 1) 2 .x 2 + 4 y (1 − y ) 2 x + 4 y 2 > 0

2
Ta có ∆′ = 4 y 2
− 4 y 2 ( y 2 + 1) = −16 y 2 < 0
2
Vì a = ( y 2 + 1) > 0 vậy f ( x, y ) > 0
(đpcm)
2

2

Phương pháp 15:
Dùng quy nạp toán học
Kiến thức:
Để chứng minh bất đẳng thức đúng với n > n0 ta thực hiện các bước sau :
1 – Kiểm tra bất đẳng thức đúng với n = n0
2 - Giả sử BĐT đúng với n =k (thay n =k vào BĐT cần chứng minh được gọi là
giả thiết quy nạp )
3- Ta chứng minh bất đẳng thức đúng với n = k +1 (thay n = k+1vào BĐT cần
chứng minh rồi biến đổi để dùng giả thiết quy nạp)
4 – kết luận BĐT đúng với mọi n > n0
1 1
1
1
∀n ∈ N ; n > 1
+ 2 + .... + 2 < 2 −
2
1 2
n
n
1
1
Giải: Với n =2 ta có 1 + < 2 −
(đúng). Vậy BĐT (1) đúng với n =2
4
2

Ví dụ1: Chứng minh rằng :

Giả sử BĐT (1) đúng với n =k ta phải chứng minh BĐT (1) đúng với n = k+1
1

1

1

1

1

Thật vậy khi n =k+1 thì (1) ⇔ 12 + 22 + .... + k 2 + (k + 1) 2 < 2 − k + 1
Theo giả thiết quy nạp
Sưu tầm và tuyển chọn

20

(1)


19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com


1 1
1
1
1
1
1
+ 2 + .... + 2 +
< 2− +
< 2−
2
2
2
1 2
k
(k + 1)
k ( k + 1)
k +1



1
1
1
1
1
+ .... +
<
+
<
2
2
2
1
(k + 1)
k + 1 ( k + 1)
k



k +1+1 1
< ⇔ k (k + 2) < (k + 1) 2 ⇔ k2+2k(k + 1) 2 k

Điều này đúng .Vậy bất

đẳng thức (1)được chứng minh
n

Ví dụ2: Cho

an + bn
 a+b
n ∈ N và a+b> 0. Chứng minh rằng 

(1)

2
 2 

Giải: Ta thấy BĐT (1) đúng với n=1
Giả sử BĐT (1) đúng với n=k ta phải chứng minh BĐT đúng với n=k+1
Thật vậy với n = k+1 ta có
 a+b
(1) ⇔ 

 2 

k +1

a k +1 + b k +1
2



k

a+b a+b
a k +1 + b k +1
⇔ 

(2)
 .
2
2
 2 
a k + b k a + b a k +1 + ab k + a k b + b k +1 a k +1 + b k +1
⇔ Vế trái (2) ≤
.
=

2
2
4
2
k +1
k +1
k +1
k
k
k +1
a +b
a + ab + a b + b


≥ 0 ⇔ a k − b k .( a − b ) ≥ 0
(3)
2
4

(

)

Ta chứng minh (3)
(+) Giả sử a ≥ b và giả thiết cho a ≥ -b ⇔ a ≥ b
k

⇔ a k ≥ b ≥ bk



(a

k

)

− b k .( a − b ) ≥ 0

(+) Giả sử a < b và theo giả thiết - aVậy BĐT (3)luôn đúng ta có (đpcm)
Ví dụ 3: Cho a ≥ −1 ,1 ≤ n ∈Ν. Chứng minh rằng : (1 + a) n ≥ 1 + n.a
Giải
n=1: bất đẳng thức luôn đúng
n=k ( k ∈ Ν ): giả sử bất đẳng thức đúng, tức là: (1 + a ) k ≥ 1 + k .a
n= k+1 . Ta cần chứng minh: (1 + a ) k +1 ≥ 1 + (k +1).a
Ta có: (1 + a) k +1 = (1 + a).(1 + a) k ≥ (1 + a).(1 + k .a ) ≥ 1 + (k +1)a + k .a 2 ≥ 1 + (k +1)a
⇒ Bất đẳng thức đúng với n= k+1
V ậy theo nguyên lý quy nạp: (1 + a) n ≥ 1 + n.a , ∀n ∈Ν
k

Ví dụ 4: Cho 1 ≤ n ∈ Ν
rằng:

a1 , a 2 ,  , a n ≥ 0

(1 − a1 )(1 − a 2 )  (1 − a n ) ≥

Giải n=1:

a1 ≤

thoả mãn

1
.
2

Chứng minh

1
2

1
1
⇒ 1 − a1 ≥ ⇒ Bài
2
2

toán đúng

n=k ( k ∈ Ν ): giả sử bất đẳng thức đúng, tức là:

Sưu tầm và tuyển chọn

a1 + a 2 +  + a n ≤

21

(1 − a1 )(1 − a 2 )  (1 − a k ) ≥

1
2


19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com
1
2
(
1

a
)(
1

a
)

(
1

a
)
=
(
1

a
)(
1

a
)

(
1

a
Ta có:
1
2
k +1
1
2
k −1 )[1 − ( a k + a k +1 ) + a k a k +1 ]
1
1
≥ (1 − a1 )(1 − a 2 )  (1 − a k −1 )[1 − ( a k + a k +1 )] ≥
a1 + a 2 +  + a k −1 + (a k + a k +1 ) ≤ )
(Vì
2
2
(1 − a1 )(1 − a 2 )  (1 − a k +1 ) ≥

n= k+1 . Ta cần chứng minh:

⇒ Bất đẳng thức đúng với n= k+1

Vậy theo nguyên lý quy nạp:
Ví dụ 5: Cho 1 ≤ n ∈ Ν ,

(1 − a1 )(1 − a 2 )  (1 − a n ) ≥

a i , bi ∈R, i =1,2,..., n .

1
2

Chứng minh rằng:

(a1b1 + a 2 b2 +  + a n bn ) ≤ (a + a +  + a )(b + b +  + bn2 )
2

2
1

2
2

2
n

2
1

2
2

Giải n=1: Bất đẳng thức luôn đúng
n=k ( k ∈ Ν ):giả sử bất đẳng thức đúng, tức là:
(a1b1 + a 2 b2 +  + a k bk ) 2 ≤ (a12 + a 22 +  + a k2 )(b12 + b22 +  + bk2 )

n= k+1 . Ta cần chứng minh:
(a1b1 + a 2 b2 +  + a k +1bk +1 ) 2 ≤ (a12 + a 22 +  + a k2+1 )(b12 + b22 +  + bk2+1 ) (1)

Thật vậy: VP(1) = (a12 + a 22 +  + a k2 )(b12 + b22 +  + bk2 ) + (a12 +  + a k2 ).b 2 +
+ a 2 (b12 + b22 +  + bk2 ) + a k2+1 .bk2+1 ≥ ( a1b1 + a 2 b2 +  + a k bk ) + 2a1b1 a k +1bk +1 + 2a 2 b2 a k +1bk +1 +
+  + 2a k bk a k +1bk +1 + a k2+1bk2+1
≥ (a1b1 + a 2 b2 +  + a k bk ) 2 + 2 ( a1b1 + a 2 b2 +  + a k bk ) a k +1bk +1 + a k2+1 .bk2+1
≥ (a1b1 + a 2 b2 +  + a k +1bk +1 ) 2

Vậy (1) được chứng minh
Ví dụ 6: Cho 1 ≤ n ∈ Ν , ai , bi ∈R, i =1,2,..., n . Chứng minh rằng:
a1 + a 2 +  + a n 2 a12 + a 22 +  + a n2
(
) ≤
n
n

Giải:
n=1: Bất đẳng thức luôn đúng
a1 + a 2 +  + a k 2 a12 + a 22 +  + a k2
) ≤
k
k
2
2
2
a + a +  + a k +1 2 a1 + a 2 +  + a k +1
) ≤
n= k+1 . Ta cần chứng minh: ( 1 2
(1)
k +1
k +1
a + a +  + a k +1
Đặt: a = 2 3
k

n=k ( k ∈ Ν ):giả sử bất đẳng thức đúng, tức là: (

VP (1) =



1
(k + 1) 2

1
(a12 + k 2 a 2 + 2ka1 a )
k +1

2
2
2
 2
a 22 + a32 +  + a k2+1  a12 + a 22 +  + a k2+1
2 a 2 + a 3 +  + a k +1
2
a
+
k
+
k
.
a
+
k
 1
=
1
k
k
k +1



Vậy (1) đựơc chứng minh
Ví dụ 7: Chứng minh rằng:

 n n = 4
Giải: n=2 ⇒ 
 (n + 1) n− 1 = 3

n n > ( n +1) n −1 , ∀n ∈ Ζ, n ≥ 2

⇒ n n > (n + 1) n −1

n=k ≥ 2 : giả sử bất đẳng thức đúng, tức là: k k > (k + 1) k −1
n= k+1:Ta c ó: k k (k + 1) k +1 ≥ (k + 1) k −1 (k + 1) k +1 = (k + 1) 2 k −2 (k + 1) 2
Sưu tầm và tuyển chọn

22

= [(k + 1) 2 ] k −1 (k + 1) 2


19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com
> (k 2 + 2k ) k −1 ( k 2 + 2k ) (vì (k + 1) 2 = k 2 + 2k + 1 > k 2 + 2k )
≥ k k ( k + 2) k ⇒ (k + 1) k +1 > (k + 2) k ⇒ Bất đẳng thức đúng với n= k+1
Vậy n n > (n +1) n−1 , ∀n ∈ Ζ, n ≥ 2
Ví dụ 8: Chứng minh rằng: sin nx ≤n sin x , ∀n ∈Ν , ∀x ∈R
Giải: n=1: Bất đẳng thức luôn đúng
n=k :giả sử bất đẳng thức đúng, tức là: sin kx ≤k sin x
n= k+1 . Ta cần chứng minh: sin(k +1) x ≤(k +1) sin x


 a + b ≤ a + b , ∀ a, b ∈ R
Ta có: 
 sin x , cos x ≤ 1, ∀ x ∈ R
Nên:

sin( k +1) x = sin kx cos x +cos kx sin x

≤ sin kx . cos x + cos kx . sin x ≤ sin kx . +. sin x ≤k sin x . +. sin x =( k +1) sin x

⇒ Bất đẳng thức đúng với n= k+1. Vậy:

Phương pháp 16:

sin nx ≤n sin x , ∀
n ∈Ν∗, ∀
x ∈R

Chứng minh phản chứng

Kiến thức:
1) Giả sử phải chứng minh bất đẳng thức nào đó đúng , ta hãy giả sử bất đẳng
thức đó sai và kết hợp với các giả thiết để suy ra điều vô lý , điều vô lý có thể là điều trái
với giả thiết , có thể là điều trái ngược nhau .Từ đó suy ra bất đẳng thức cần chứng minh
là đúng
2) Giả sử ta phải chứng minh luận đề “p ⇒ q”
Muốn chứng minh p ⇒ q (với p : giả thiết đúng, q : kết luận đúng) phép chứng
minh được thực hiên như sau:
Giả sử không có q ( hoặc q sai) suy ra điều vô lý hoặc p sai. Vậy phải có q
(hay q đúng)
Như vậy để phủ định luận đề ta ghép tất cả giả thiết của luận đề với phủ định kết
luận của nó .
Ta thường dùng 5 hình thức chứng minh phản chứng sau :
A - Dùng mệnh đề phản đảo : “P ⇒ Q”
B – Phủ định rôi suy trái giả thiết
C – Phủ định rồi suy trái với điều đúng
D – Phủ định rồi suy ra 2 điều trái ngược nhau
E – Phủ định rồi suy ra kết luận :
Ví dụ 1: Cho ba số a,b,c thỏa mãn a +b+c > 0 , ab+bc+ac > 0 , abc > 0
Chứng minh rằng a > 0 , b > 0 , c > 0
Giải:
Giả sử a ≤ 0 thì từ abc > 0 ⇒ a ≠ 0 do đó a < 0. Mà abc > 0 và a < 0 ⇒ cb < 0
Từ ab+bc+ca > 0 ⇒ a(b+c) > -bc > 0
Vì a < 0 mà a(b +c) > 0 ⇒ b + c < 0
a < 0 và b +c < 0 ⇒ a + b +c < 0 trái giả thiết a+b+c > 0
Sưu tầm và tuyển chọn

23


19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com
Vậy a > 0 tương tự ta có b > 0 , c > 0
Ví dụ 2:Cho 4 số a , b , c ,d thỏa mãn điều kiện
ac ≥ 2.(b+d) .Chứng minh rằng có ít nhất một trong các bất đẳng thức sau là sai:
a 2 < 4b
, c 2 < 4d
Giải:
Giả sử 2 bất đẳng thức : a 2 < 4b , c 2 < 4d đều đúng khi đó cộng các vế ta được
a 2 + c 2 < 4(b + d )
(1)
Theo giả thiết ta có 4(b+d) ≤ 2ac (2)
Từ (1) và (2) ⇒ a 2 + c 2 < 2ac hay ( a − c ) 2 < 0 (vô lý)
Vậy trong 2 bất đẳng thức a 2 < 4b và c 2 < 4d có ít nhất một các bất đẳng thức sai
Ví dụ 3:Cho x,y,z > 0 và xyz = 1. Chứng minh rằng
1

1

1

Nếu x+y+z > x + y + z thì có một trong ba số này lớn hơn 1
Giải :Ta có (x-1).(y-1).(z-1) =xyz – xy- yz + x + y+ z –1
1

1

1

1

1

1

=x + y + z – ( x + y + z ) vì xyz = theo giả thiết x+y +z > x + y + z
nên (x-1).(y-1).(z-1) > 0
Trong ba số x-1 , y-1 , z-1 chỉ có một số dương
Thật vậy nếu cả ba số dương thì x,y,z > 1 ⇒ xyz > 1 (trái giả thiết)
Còn nếu 2 trong 3 số đó dương thì (x-1).(y-1).(z-1) < 0 (vô lý)
Vậy có một và chỉ một trong ba số x , y,z lớn hơn 1
Ví dụ 4: Cho a, b, c >0 và a.b.c=1. Chứng minh rằng: a + b + c ≥ 3 (Bất đẳng thức
Cauchy 3 số)
Giải: Giả sử ngược l ại:
a + b + c < 3 ⇒ (a + b + c)ab < 3ab ⇔ a 2 b + b 2 a + cab < 3ab ⇔ a 2 b + (a 2 − 3a )b + 1 < 0

Xét : f (b) = a 2 b + (a 2 − 3a)b + 1
Có ∆ = (a 2 − 3a) 2 − 4a = a 4 − 6a 3 + 9a 2 − 4a = a(a 3 − 6a 2 + 9a − 4) = = a(a −1) 2 (a − 4) ≤ 0

 a , b, c > 0
(Vì 
a+ b+ c< 3

⇒ 0 < a < 3 ) ⇒ f (b) ≥ 0 ⇒ vô

lý. Vậy: a + b + c ≥ 3

Ví dụ 5:
Chứng minh rằng không tồn tại các số a, b, c đồng thời thỏa mãn (1),(2),(3):
a < b −c
(1)
b < c −a
(2)
c < a −b
(3)
Giải: Giả sử tồn tại các số a, b, c đồng thời thỏa mãn (1),(2),(3), lúc đó:
a < b −c ⇒ (b − c ) 2 > a 2
⇒ −( a + b − c )(a − b + c) > 0
(1’)
2
2
b < c −a
⇒ −(−a + b + c)(a + b − c ) > 0
⇒ (c − a ) > b
(2’)
c < a −b
⇒ −(a + b − c)(−a + b + c) > 0
⇒ ( a − b) 2 > c 2
(3’)


[(
a
+
b

c
)(
a

b
+
c)(−a + b + c)] 2 > 0
Nhân (1’), (2’) và (3’) vế với vế ta được:
⇒ Vô lý. Vậy bài toán được chứng minh
Phương pháp 17 :
Sưu tầm và tuyển chọn

Sử dụng biến đổi lượng giác
24


19 Phương pháp chứng minh Bất đẳng thức_ Nguyễn Đức Hàn www.VNMATH.com
1. Nếu

x ≤R

thì đặt x = Rcos α ,

2. Nếu

x ≥R

thì đặt x =

3.Nếu ( x − a ) 2 + ( y − b ) 2




α ∈[0, c ) ∪ π,3

π

− π π 
α ∈
,
 2 2 


2

 x = a + R cosα
thì đặt 
, (α = 2π )
 y = b + R sinα
 x = α + aR cosα
a, b > 0 thì đặt
, (α = 2π )

 y = β + bR sinα

= R 2 , ( > 0)

2

4. Nếu

R
cos α

α ∈ [ 0, π ] ; hoặc x = Rsin α ,

2

 x −α 
 y −β 
2

 +
 =R
 a 
 b 

5. Nếu trong bài toán xuất hiện biểu thức : ( ax ) 2 + b 2 , ( a, b > 0)
Thì đặt:

x=

b
 π π
tgα , α ∈  − , 
a
 2 2

Ví dụ 1: Cmr : a 1 −b
Giải : a ≤1, b ≤1
Đặt

 a = cosα
:
 b = cos β

2

(

+b 1 −a 2 + 3 ab −

(1 −b )(1 −a ) ) ≤2, ∀a, b ∈[−1,1]
2

2

(α , β ∈ [ 0, π ] )

Khi đó :

(

a 1 − b 2 + b 1 − a 2 + 3 ab −

(1 − b )(1 − a ) )
2

2

= cos α. sin β + cos β. sin α + 3 ( cos α. cos β − sin α. sin β )
= sin(α + β ) + 3. cos(α + β )

Ví dụ 2 : Cho
Giải :

π

) ∈[ − 2,2] ⇒ ( dpcm)
6
a , b ≥1 .Chứng minh

= 2 cos(α + β −

1

 a = cos 2 α
Đặt : 
1
b =
 cos 2 β

rằng : a


 π 
 α , β ∈  0,  
 2


⇒ a b −1 + b a −1 =

1
1
tg 2 β +
2
cos α
cos 2 β

tgβ
tgα
(tgβ . cos 2 β + tgα . cos 2 α )
+
=
cos 2 α cos 2 β
cos 2 β . cos 2 α
1 (sin 2 β + sin 2α ) sin(α + β ) cos in(α − β )
=
=
2 cos 2 β . cos 2 α
cos 2 β . cos 2 α
1

= ab
2
cos β . cos 2 α
=

Sưu tầm và tuyển chọn

25

tg 2α

b −1 + b a1 ≤ ab


×