Tải bản đầy đủ

Vấn đề nhận giá trị của hàm hữu tỷ trên trường đóng đại số, đặc trưng không và áp dụng ( Luận văn thạc sĩ)

ĐẠI HỌC THÁI NGUYÊN
TRƯỜNG ĐẠI HỌC KHOA HỌC

VŨ THỊ THÙY DUNG

VẤN ĐỀ NHẬN GIÁ TRỊ CỦA HÀM HỮU TỶ
TRÊN TRƯỜNG ĐÓNG ĐẠI SỐ,
ĐẶC TRƯNG KHÔNG VÀ ÁP DỤNG

LUẬN VĂN THẠC SĨ TOÁN HỌC

Thái Nguyên - Năm 2014


ĐẠI HỌC THÁI NGUYÊN
TRƯỜNG ĐẠI HỌC KHOA HỌC

VŨ THỊ THÙY DUNG

VẤN ĐỀ NHẬN GIÁ TRỊ CỦA HÀM HỮU TỶ
TRÊN TRƯỜNG ĐÓNG ĐẠI SỐ, ĐẶC TRƯNG

KHÔNG VÀ ÁP DỤNG

Chuyên ngành: PHƯƠNG PHÁP TOÁN SƠ CẤP
Mã số: 60460113

LUẬN VĂN THẠC SĨ TOÁN HỌC

Người hướng dẫn khoa học:
TS. VŨ HOÀI AN

Thái Nguyên - Năm 2014


i

Mục lục
Mục lục . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

i

Lời cam đoan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ii

Lời cảm ơn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

iii

Bảng ký hiệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

iv

Mở đầu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

v

1 Về vấn đề nhận giá trị đối với hàm phân hình p-adic
1.1

1.2



1

Về vấn đề nhận giá trị đối với hàm số thực trong toán học trung
học phổ thông . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

1.1.1

Các định lý xác định tập giá trị của hàm số liên tục . . .

1

1.1.2

Các phương pháp tìm tập giá trị . . . . . . . . . . . . .

2

Về vấn đề nhận giá trị đối với hàm phân hình p-adic . . . . . .

18

1.2.1

Hàm đặc trưng của hàm phân hình p-adic . . . . . . . .

18

1.2.2

Một số kết quả của lý thuyết Nevanlinna p-adic . . . . .

21

2 Vấn đề nhận giá trị của hàm hữu tỷ trên trường đóng đại số,
đặc trưng không và áp dụng
2.1

Vấn đề nhận giá trị của hàm hữu tỷ trên trường đóng đại số,
đặc trưng không . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.2

25
26

Một số áp dụng của các Định lý nhận giá trị đối với hàm hữu
tỷ trên trường đóng đại số, đặc số không . . . . . . . . . . . . .

34

Kết luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

36

Tài liệu tham khảo . . . . . . . . . . . . . . . . . . . . . . . . . . .

37


ii

Lời cam đoan
Tôi xin cam đoan luận văn Thạc sĩ chuyên ngành Phương pháp toán sơ
cấp với đề tài “Vấn đề nhận giá trị của Hàm hữu tỷ trên trường đóng đại số,
đặc trưng không và áp dụng” là của tôi. Các tài liệu được trích dẫn đầy đủ.
Tác giả

Vũ Thị Thùy Dung


iii

Lời cảm ơn
Trước hết, tôi xin gửi lời biết ơn chân thành và sâu sắc tới TS. Vũ Hoài
An. Sau quá trình nhận đề tài và nghiên cứu dưới sự hướng dẫn khoa học của
Thầy, luận văn “Vấn đề nhận giá trị của Hàm hữu tỷ trên trường đóng đại số,
đặc trưng không và áp dụng” của tôi đã được hoàn thành.
Tôi xin cảm ơn GS.TSKH Hà Huy Khoái, GS.TSKH Nguyễn Tự Cường,
PGS. TS Lê Thị Thanh Nhàn, PGS. TS Đàm Văn Nhỉ, PGS.TS Trịnh Thanh
Hải đã có nhiều ý kiến quý báu để tác giả hoàn thành luận văn.
Tôi cũng xin gửi lời cảm ơn chân thành đến Ban Giám hiệu, Phòng Đào
tạo - Khoa học - Quan hệ quốc tế và Khoa Toán - Tin của Trường Đại học
Khoa học - Đại học Thái Nguyên đã tạo điều kiện thuận lợi nhất trong suốt
quá trình học tập tại trường cũng như thời gian tôi hoàn thành đề tài này. Sự
giúp đỡ nhiệt tình và thái độ thân thiện của cán bộ thuộc Phòng Đào tạo và
Khoa Toán - Tin đã để lại trong lòng mỗi chúng tôi những ấn tượng hết sức
tốt đẹp.
Tôi xin cảm ơn Sở Giáo dục và Đào tạo Hải Phòng và Trường trung học
phổ thông Hồng Bàng nơi tôi đang công tác đã tạo điều kiện cho tôi hoàn
thành khóa học này.
Tôi xin cảm ơn gia đình, bạn bè đồng nghiệp và các thành viên trong lớp
cao học Toán K6B (khóa 2012 - 2014) đã quan tâm, tạo điều kiện, động viên
cổ vũ để tôi có thể hoàn thành nhiệm vụ của mình.
Thái Nguyên, tháng 4 năm 2014
Tác giả
Vũ Thị Thùy Dung


iv

Bảng ký hiệu
f
n(f, a)
T (f )
K

Hàm hữu tỷ
Hàm đếm của f tại điểm a
Hàm đặc trưng của f
Trường đóng đại số, đặc trưng không.


v

Mở đầu
1. Lý do chọn đề tài
Năm 1983, R. C. Mason chứng minh định lý rất đẹp sau đây cho đa thức
(xem [2]):
Định lý A. Giả sử a(t), b(t), c(t) là các đa thức với hệ số phức, nguyên tố cùng
nhau từng cặp và thỏa mãn hệ thức a(t)+b(t) = c(t). Khi đó, nếu ký hiệu n0 (f )
số nghiệm phân biệt của một đa thức f , thì ta có
max{dega, degb, degc}

n0 (abc) − 1.

Mặt khác, trong [5], Hà Huy Khoái và Mai Văn Tư đã chứng minh kết
quả sau đây:
Định lý B. Giả sử f là hàm phân hình trên Cp , a1 , . . . , aq ∈ Cp ∪ {∞}. Khi
đó

q

(q − 2)Tf (r)

N1,f (ai , r) − log r + O(1).
i=1

Xét đa thức f (x) ∈ Cp [x], degf = d. Viết f (x) = (x − z1 )m1 . . . (x − zk )mk . Ta
có Tf (r) = d log r, N1,f (0, r) = k log r.
Từ đây và quan sát hai định lý trên, chúng ta thấy có sự tương tự giữa bậc
của đa thức f : degf với Hàm đặc trưng của hàm phân hình p-adic: Tf (r); Số
nghiệm của đa thức f : n0 (f ) với Hàm đếm không điểm của f tính với bội 1:
N1,f (0, r).
Nhận xét này gợi ý cho việc tương tự Định lý B đối với Hàm hữu tỷ trên
trường đóng đại số, đặc trưng không. Từ đó nhận lại Định lý A và các hệ quả
của nó.
Theo hướng nghiên cứu này, chúng tôi xem xét
Vấn đề nhận giá trị của Hàm hữu tỷ trên trường đóng đại số,
đặc trưng không và áp dụng.


vi

2. Mục tiêu nghiên cứu.
2.1. Tổng hợp, trình bày các kết quả trong [1]. Các kết quả này là tương tự
các Định lý B cho hàm hữu tỷ trên trường đóng đại số, đặc trưng không
(Định lý 2.1.11, Định lý 2.1.12).
2.2. Trình bày lại áp dụng của Định lý 2.1.11, Định lý 2.1.12, trong đó có cách
chứng minh khác cho Định lý Mason(xem [1]).
3. Nội dung nghiên cứu
Vấn đề 1. Xét vấn đề nhận giá trị đối với hàm số thực trong toán học
trung học phổ thông. Xét vấn đề nhận giá trị đối với hàm phân hình p-adic.
Vấn đề 2. Xét vấn đề nhận giá trị đối với hàm hữu tỷ trên trường đóng
đại số, đặc trưng không.
4. Kết quả nghiên cứu
4.1. Tổng hợp và trình bày các ví dụ về vấn đề nhận giá trị đối với hàm số
thực trong toán học trung học phổ thông.Tổng hợp và trình bày tổng
quan một số kết quả chính có liên quan của Lý thuyết Nevanlinna p-adic.
4.2. Tổng hợp và trình bày lại các định lý nhận giá trị ở trong [1] và áp dụng
của nó.
Trong luận văn này, chúng tôi đã trình bày các kết quả trong [1], các kết quả
này tương tự hai định lý chính của Lý thuyết Nevalinna cho hàm hữu tỷ trên
trường đóng đại số, đặc trưng không. Từ đó trình bày lại hai áp dụng, trong
đó có một chứng minh khác Định lý Mason. Cụ thể là:
• Định lý 2.1.11, Định lý 2.1.12.
• Từ Định lý 2.1.11 nhận được Định lý 2.2.1. Định lý 2.2.1 là một điều kiện
đủ để xác định khi nào một hữu tỷ là hàm hằng.
• Từ Định lý 2.1.12 nhận được Định lý 2.2.2 - Định lý Mason.


vii

Luận văn là tài liệu tham khảo có ích cho giáo viên Toán trung học phổ
thông, học viên Cao học chuyên ngành Phương pháp toán sơ cấp.
5. Bố cục luận văn
Luận văn được chia làm hai chương cùng với phần mở đầu, kết luận và
tài liệu tham khảo.
Chương 1. Trong chương này chúng tôi tổng hợp và trình bày các nội dung
về vấn đề nhận giá trị đối hàm số thực trong toán học trung học phổ thông và
vấn đề nhận giá trị đối hàm phân hình p-adic.
Chương 2. Trong chương này chúng tôi tổng hợp và trình bày lại vấn đề
nhận giá trị đối với hàm hữu tỷ trên trường đóng đại số, đặc trưng không và
áp dụng (xem [1]).


1

Chương 1
Về vấn đề nhận giá trị đối với hàm
phân hình p-adic
Trong chương 1, chúng tôi trình bày vấn đề nhận giá trị đối với hàm số
thực trong toán học phổ thông và hàm phân hình p-adic[5-6].

1.1

Về vấn đề nhận giá trị đối với hàm số thực trong
toán học trung học phổ thông
Vấn đề nhận giá trị đối với hàm số thực trong toán học trung học phổ

thông là như sau: Cho f là hàm số thực sơ cấp với tập xác định là D, a ∈
R ∪ {∞}. Hãy xét f có nhận a ?
Công cụ chính để giải quyết vấn đề này là các định lý về hàm liên tục và khả
vi [3], điều kiện có nghiệm của một số kiểu phương trình trong toán học trung
học phổ thông.
1.1.1

Các định lý xác định tập giá trị của hàm số liên tục

Ở đây chúng tôi trình bày lại các kiến thức trong [3].
Định nghĩa 1.1.1. Cho hàm f : A → R; x0 ∈ A. Nếu ∀ε > 0, ∃δ(ε) > 0 sao
cho ∀x ∈ A : |x − x0 | < δ, |f (x) − f (x0 )| < ε thì ta nói f liên tục tại điểm x0 .
• Nếu f liên tục tại mọi điểm x0 ∈ A thì ta nói f liên tục trên A.


2

• Nếu f không liên tục tại điểm x0 ∈ A thì ta nói f gián đoạn tại điểm
x0 ∈ A.
Định lý 1.1.2. Nếu f liên tục trên [a, b] thì nó đạt cận trên đúng và cận dưới
đúng, tức là tồn tại hai số x0 và x0 thuộc [a, b] sao cho: f (x0 ) = max f (x) và
f (x0 ) = min f (x).
Định lý 1.1.3. (Định lý về không điểm)
Nếu f liên tục trên [a, b] và f (a)f (b) < 0 thì tồn tại ít nhất một điểm c ∈ [a, b]
sao cho f (c) = 0.
Định lý 1.1.4. (Định lý về quan hệ giữa tính đơn điệu và tính liên tục)
Cho f là một hàm đơn điệu. Điều kiện cần và đủ để f liên tục trên [a, b] là
miền giá trị của nó là một đoạn với hai đầu mút là f (a) và f (b).
Ví dụ 1.1.5.
Hàm số y = −x + 1 liên tục tại mọi điểm thuộc R.
Thật vậy, lấy x0 ∈ R bất kỳ, ∀ε > 0 chọn δ=ε thì khi |x − x0 | < δ ta có
|f (x) − f (x0 )| < ε.
Ví dụ 1.1.6.
Hàm số y=sin x liên tục trên R.
Thật vậy ta có:
x−x
| = |x − x |.
2
π
π
. Do đó ∀ε > 0, ∃δ = min(ε, ) nên | sin x − sin x | <
2
2

| sin x − sin x | = 2| cos
Vì |sin t|

|t|, ∀0

t

x+x
x−x
|| sin
|
2
2

2|

ε.
1.1.2

Các phương pháp tìm tập giá trị

Các ví dụ sau đây là quen thuộc đối với giáo viên toán trung học phổ
thông.


3
Phương pháp 1: Dùng định nghĩa và điều kiện có nghiệm của phương trình
để tìm tập giá trị của hàm số thực trong toán học trung học phổ thông.

Vấn đề nhận giá trị đối với hàm số thực trong toán học trung học phổ
thông liên quan đến tập giá trị của hàm số thực và ứng dụng của nó. Trong
mục này, chúng tôi đưa ra các ví dụ tìm tập giá trị và ứng dụng của khái niệm
này vào phương trình, bất phương và bài toán tìm giá trị lớn nhất, giá trị nhỏ
nhất của hàm số thực trong toán học trung học phổ thông.
Ví dụ 1.1.7.
Cho y là hàm số thực xác định trên D. Xác định tập giá trị của y biết
y = fi (x), i = 1, . . . , 6, với :
sin x + cos x − 1
f1 (x) =
; f2 (x) =
sin x − cos x + 3
cos x + sin x + 1
f3 (x) =
; f4 (x) =
cos x − sin x − 2
sin x + cos x
f5 (x) =
; f6 (x) =
sin x − cos x − 2

cos x + 2 sin x + 3
2 cos x − sin x + 4
sin x + 1
2 cos x − sin x − 3
cos x + 3
2 cos x − sin x + 3

Lời giải
sin x + cos x − 1
a) f1 (x) =
sin x − cos x + 3
sin x + cos x − 1
Đặt y =
sin x − cos x + 3
sin x + cos x − 1
(1a)
Xét phương trình : y =
sin x − cos x + 3
y thuộc tập giá trị của hàm số khi và chỉ khi phương trình (1a) với ẩn x, tham
số y có nghiệm.
Ta có :
(1a) ⇔ sin x + cos x − 1 = y sin x − y cos x + 3y
⇔ (y − 1) sin x − (y + 1) cos x = −3y − 1
⇒ (y − 1)2 + (y + 1)2 ≥ (3y + 1)2
⇔ 7y 2 + 6y − 1 ≤ 0
1
⇔ −1 ≤ y ≤
7
Tập giá trị G1 = − 1,

1
7

D.


Luận vận đậy đu ở file:Luận vận Full














Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay

×