Tải bản đầy đủ

Một số quỹ tích của môđun hữu hạn sinh trên vành địa phương noether ( Luận án tiến sĩ)

BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC VINH

NGUYỄN THỊ KIỀU NGA

MỘT SỐ QUỸ TÍCH
CỦA MÔĐUN HỮU HẠN SINH
TRÊN VÀNH ĐỊA PHƯƠNG NOETHER

LUẬN ÁN TIẾN SĨ TOÁN HỌC

Nghệ An - 2014


BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC VINH

NGUYỄN THỊ KIỀU NGA

MỘT SỐ QUỸ TÍCH
CỦA MÔĐUN HỮU HẠN SINH

TRÊN VÀNH ĐỊA PHƯƠNG NOETHER

Chuyên ngành: Đại số và Lý thuyết số
Mã số: 62.46.01.04

LUẬN ÁN TIẾN SĨ TOÁN HỌC

Người hướng dẫn khoa học:
PGS. TS. Lê Thị Thanh Nhàn
TS. Nguyễn Thị Hồng Loan

Nghệ An - 2014


Lời cam đoan
Tôi xin cam đoan đây là công trình nghiên cứu của riêng tôi. Các
kết quả viết chung với tác giả khác đã được sự nhất trí của đồng tác giả
khi đưa vào luận án. Các kết quả nêu trong luận án là trung thực và
chưa từng được công bố trong bất kỳ một công trình nào khác.

Tác giả

Nguyễn Thị Kiều Nga


Lời cảm ơn
Tôi xin bày tỏ lòng biết ơn vô hạn tới cô giáo kính yêu của tôi
- PGS. TS. Lê Thị Thanh Nhàn. Cô đã tận tình dìu dắt tôi từ những
bước chập chững đầu tiên trên con đường nghiên cứu khoa học. Với tất
cả niềm say mê khoa học và tâm huyết của người thầy, cô không chỉ dạy
tôi về tri thức toán học mà còn dạy tôi phương pháp nghiên cứu, cách
phát hiện và giải quyết vấn đề. Hơn nữa, cô còn luôn quan tâm, động
viên và giúp đỡ tôi những lúc tôi gặp khó khăn trong cuộc sống. Tôi thấy
mình thật may mắn khi được làm khoa học dưới sự hướng dẫn của cô.
Tôi cũng xin bày tỏ lòng biết ơn sâu sắc tới cô giáo hướng dẫn thứ
hai của tôi - TS. Nguyễn Thị Hồng Loan. Cô đã luôn quan tâm, nhắc
nhở và tạo mọi điều kiện thuận lợi trong quá trình tôi học tập, nghiên
cứu. Có những lúc khó khăn trong cuộc sống đã làm tôi nản chí, lúc đó
cô như người chị kịp thời động viên, khích lệ giúp tôi vượt qua mọi khó
khăn.


Tôi xin trân trọng cám ơn GS. TSKH. Nguyễn Tự Cường. Thầy
là người đầu tiên đưa tôi đến với Đại số giao hoán và tận tình dạy dỗ
tôi từ khi tôi còn là học viên cao học. Như một người cha, thầy vẫn luôn
quan tâm và giúp đỡ tôi trong học tập và trong cuộc sống.
Tôi xin trân trọng cám ơn Ban giám hiệu, Khoa đào tạo Sau đại
học, Khoa Toán- Trường Đại học Vinh đã tạo mọi điều kiện cho tôi học
tập.
Tôi xin chân thành cám ơn Ban giám hiệu trường Đại học sư phạm
Hà Nội 2 đã cho tôi cơ hội được đi học tập và nghiên cứu. Đặc biệt, tôi
xin bày tỏ lòng biết ơn đến Ban chủ nhiệm Khoa Toán, các thầy cô giáo
và đồng nghiệp trong Tổ Đại số - Trường Đại học sư phạm Hà Nội 2
đã quan tâm động viên và và giúp đỡ nhiều mặt trong thời gian tôi làm


nghiên cứu sinh.
Tôi vô cùng biết ơn cô Tạ Thị Phương Hòa đã luôn giành cho tôi
những tình cảm trìu mến. Tôi xin cám ơn các anh chị em trong nhóm
xêmina Đại số trường Đại học Thái Nguyên về những trao đổi khoa học
và chia sẻ trong cuộc sống. Xin cám ơn em Trần Đỗ Minh Châu và em
Trần Nguyên An đã dành cho tôi những tình cảm quý báu.
Tôi xin bày tỏ lòng biết ơn sâu sắc tới những người thân trong gia
đình của mình. Những người luôn động viên chia sẻ khó khăn và luôn
mong mỏi tôi thành công. Tôi xin cám ơn Chồng và hai Con trai yêu
quí, những người đã chấp nhận mọi khó khăn, gánh vác toàn bộ công
việc cho tôi để tôi yên tâm học tập. Đó là nguồn động viên rất lớn, giúp
tôi vượt qua khó khăn để tôi có thể hoàn thành luận án này.

Nguyễn Thị Kiều Nga

5


Mục lục
Mở đầu

7

1 Kiến thức chuẩn bị
1.1 Tính catenary của vành . . . . . . . . . . .
1.2 Môđun đối đồng điều địa phương . . . . . .
1.3 Biểu diễn thứ cấp của môđun Artin . . . . .
1.4 Môđun Cohen-Macaulay và Cohen-Macaulay
suy rộng . . . . . . . . . . . . . . . . . . . .

. . . . . . .
. . . . . . .
. . . . . . .

21
21
24
27

. . . . . . .

29

2 Quỹ tích không Cohen-Macaulay
2.1 Quỹ tích không Cohen-Macaulay . . . . . . . . . . . . .
2.2 Liên hệ với tính catenary phổ dụng và tính không trộn lẫn
2.3 Chiều của quỹ tích không Cohen-Macaulay . . . . . . . .

33
34
41
47

3 Quỹ tích không Cohen-Macaulay suy rộng
3.1 Giá suy rộng . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 Quỹ tích không Cohen-Macaulay suy rộng . . . . . . . .

54
55
60

4 Một số quỹ tích liên quan đến tính Cohen-Macaulay
4.1 Quỹ tích giả Cohen-Macaulay và quỹ tích giả CohenMacaulay suy rộng . . . . . . . . . . . . . . . . . . . . .
4.2 Liên hệ với môđun chính tắc . . . . . . . . . . . . . . . .

73

Kết luận và kiến nghị

92

Các công trình liên quan đến luận án

93

Tài liệu tham khảo

93
6

74
86


Mở đầu
1. Lý do chọn đề tài
Cho (R, m) là vành giao hoán, địa phương, Noether với iđêan cực
đại duy nhất m. Cho M là R-môđun hữu hạn sinh với chiều Krull
dim M = d. Ta luôn có depth M

dim M . Nếu depth M = dim M

thì ta nói M là môđun Cohen-Macaulay. Lớp vành và môđun CohenMacaulay đóng vai trò trung tâm trong Đại số giao hoán và có ứng dụng
trong nhiều lĩnh vực khác nhau của Toán học như Đại số đồng điều, Tổ
hợp và Hình học đại số.
Nhiều mở rộng của lớp vành và môđun Cohen-Macaulay đã được
giới thiệu và quan tâm nghiên cứu. Hai mở rộng đầu tiên là lớp vành
(môđun) Buchsbaum và lớp vành (môđun) Cohen-Macaulay suy rộng.
Với mọi hệ tham số x của M , đặt I(x; M ) = (M/xM ) − e(x; M ), trong
đó e(x; M ) là số bội của M ứng với hệ tham số x. Ta luôn có I(x; M )

0

với mọi hệ tham số x của M và M là Cohen-Macaulay nếu và chỉ nếu
I(x; M ) = 0 với một (hoặc với mọi) hệ tham số x của M . Vì thế, năm
1965, D. A. Buchsbaum [7] đã đưa ra giả thuyết rằng I(x; M ) là một
hằng số không phụ thuộc vào hệ tham số x của M . Năm 1973, W. Vogel
và J. St¨
uckrad [54] đã xây dựng hàng loạt ví dụ chứng tỏ giả thuyết
của D. A. Buchsbaum là không đúng, đồng thời họ nghiên cứu lớp vành
và môđun thỏa mãn điều kiện trong giả thuyết của D. A. Buchsbaum.
Các môđun này được gọi là môđun Buchsbaum. Sau đó N. T. Cường, P.
Schenzel và N. V. Trung [50] đã giới thiệu và nghiên cứu lớp môđun M
thỏa mãn điều kiện sup I(x; M ) < ∞, trong đó cận trên lấy theo mọi hệ
tham số x của M , và họ gọi chúng là môđun Cohen-Macaulay suy rộng.
Ngày nay, khái niệm môđun Buchsbaum và môđun Cohen-Macaulay suy
7


rộng đã trở nên rất quen biết trong Đại số giao hoán.
Hai mở rộng tiếp theo dựa vào tính chất không trộn lẫn của môđun
Cohen-Macaulay. Ta biết rằng nếu M là môđun Cohen-Macaulay thì
dim R/p = d với mọi p ∈ AssR M . Khi nghiên cứu cho trường hợp
môđun trộn lẫn, R. P. Stanley [47] đã giới thiệu khái niệm môđun CohenMacaulay dãy cho các môđun phân bậc, sau đó được P. Schenzel [45], N.
T. Cường và L. T. Nhàn [19] định nghĩa cho môđun hữu hạn sinh trên
vành địa phương. Mở rộng khái niệm môđun Cohen-Macaulay suy rộng
cho trường hợp môđun trộn lẫn, N. T. Cường và L. T. Nhàn [19] đã giới
thiệu khái niệm môđun Cohen-Macaulay suy rộng dãy.
Hai mở rộng khác của lớp vành và môđun Cohen-Macaulay là lớp
vành (môđun) giả Cohen-Macaulay và lớp vành (môđun) giả CohenMacaulay suy rộng. Cho x = (x1 , . . . , xd ) là hệ tham số của M . Đặt
t+1
t
t
((xt+1
1 , . . . , xd )M :M x1 . . . xd ).

QM (x) =
t>0

Khi đó QM (x) là môđun con của M và xM ⊆ QM (x). R. Hartshorne
[27] đã chỉ ra rằng, nếu M là môđun Cohen-Macaulay thì xM = QM (x)
với một (hoặc với mọi) hệ tham số x của M , tức là
J(x; M ) = e(x; M ) −

M/QM (x) = 0.

Hơn nữa, nếu M là Cohen-Macaulay suy rộng thì sup J(x; M ) < ∞,
trong đó cận trên lấy theo các hệ tham số x của M (xem [16]). Vì thế,
năm 2003, N. T. Cường và L. T. Nhàn [19] đã nghiên cứu lớp môđun M
thỏa mãn điều kiện J(x; M ) = 0 với một (hoặc với mọi) hệ tham số x
của M . Họ gọi lớp môđun này là môđun giả Cohen-Macaulay. Đồng thời
N. T. Cường và L. T. Nhàn [19] cũng nghiên cứu lớp môđun M với tính
chất sup J(x; M ) < ∞ trong đó cận trên lấy theo tập tất cả các hệ tham
số x của M và họ gọi chúng là môđun giả Cohen-Macaulay suy rộng.
8


Tóm lại, cùng với lớp môđun Cohen-Macaulay, các lớp môđun
Buchsbaum, môđun Cohen-Macaulay suy rộng, môđun Cohen-Macaulay
dãy, môđun Cohen-Macaulay suy rộng dãy, môđun giả Cohen-Macaulay
và môđun giả Cohen-Macaulay suy rộng đã trở thành những lớp môđun
được quan tâm trong Đại số giao hoán và cấu trúc của chúng đã được
biết đến thông qua các công trình [12], [13], [19], [24], [25], [45], [46], [47],
[48], [49],[50], [53]... Tuy nhiên, nghiên cứu các quỹ tích liên quan đến
tính Cohen-Macaulay là một hướng nghiên cứu thời sự cần được quan
tâm của Đại số giao hoán.
Các nghiên cứu trước đây về quỹ tích không Cohen-Macaulay
chỉ tập trung chủ yếu về tính chất đóng theo tôpô Zariski (xem R.
Hartshorne [28], P. Schenzel [53]) hoặc về chiều của quỹ tích (xem [10],
[11]) khi vành cơ sở R "tốt”, chẳng hạn khi R là thương của một vành
Gorenstein địa phương. Trong luận án này, chúng tôi quan tâm đến vấn
đề mô tả quỹ tích không Cohen-Macaulay với vành cơ sở tùy ý, đồng
thời nghiên cứu tính chất của quỹ tích này trong mối quan hệ với tính
catenary, catenary phổ dụng, tính không trộn lẫn của vành, các điều
kiện Serre của môđun và tính Cohen-Macaulay của các thớ hình thức.
Chúng tôi cũng đặt vấn đề nghiên cứu một số quỹ tích liên quan đến tính
Cohen-Macaulay như quỹ tích không Cohen-Macaulay suy rộng, quỹ tích
không Cohen-Macaulay dãy, quỹ tích không Cohen-Macaulay suy rộng
dãy, quỹ tích giả Cohen-Macaulay và quỹ tích giả Cohen-Macaulay suy
rộng.
Với các lý do trên, chúng tôi chọn đề tài nghiên cứu cho luận án
của mình là: "Một số quỹ tích của môđun hữu hạn sinh trên vành địa
phương Noether ".

9


2. Mục đích nghiên cứu
Mục đích của luận án là mô tả quỹ tích không Cohen-Macaulay và
một số quỹ tích liên quan đến tính Cohen-Macaulay như quỹ tích không
Cohen-Macaulay suy rộng, quỹ tích không Cohen-Macaulay dãy và quỹ
tích không Cohen-Macaulay suy rộng dãy, quỹ tích giả Cohen-Macaulay
và quỹ tích giả Cohen-Macaulay suy rộng. Đồng thời chứng minh một
số kết quả mới về các quỹ tích này trong mối quan hệ với tính catenary,
tính catenary phổ dụng, các điều kiện Serre, tính Cohen-Macaulay của
các thớ hình thức, chiều của các môđun đối đồng điều địa phương và
kiểu đa thức.
3. Đối tượng nghiên cứu
Đối tượng nghiên cứu của luận án là một số quỹ tích của môđun
hữu hạn sinh trên vành giao hoán địa phương Noether liên quan đến
tính Cohen-Macaulay.
4. Phạm vi nghiên cứu
Lĩnh vực nghiên cứu của luận án là Đại số giao hoán. Luận án
tập trung nghiên cứu về môđun hữu hạn sinh trên vành giao hoán địa
phương Noether.
5. Phương pháp nghiên cứu
Về mặt kỹ thuật, chúng tôi sử dụng các tập giả giá giới thiệu bởi
M. Brodmann và R. Y. Sharp [5], đồng thời đưa ra khái niệm giá suy
rộng để mô tả các quỹ tích. Ngoài ra, chúng tôi sử dụng một số lý thuyết
quan trọng của Đại số giao hoán để nghiên cứu như lý thuyết đối đồng
điều địa phương, lý thuyết phân tích nguyên sơ, lý thuyết biểu diễn thứ
cấp, kiểu đa thức...
6. Ý nghĩa khoa học và thực tiễn
Các kết quả của luận án làm phong phú hướng nghiên cứu về
các quỹ tích của môđun hữu hạn sinh, đồng thời làm rõ thêm cấu
10


trúc một số lớp môđun đang được quan tâm trong Đại số giao hoán
như môđun Cohen-Macaulay, môđun Cohen-Macaulay suy rộng, môđun
Cohen-Macaulay dãy, môđun Cohen-Macaulay suy rộng dãy, môđun giả
Cohen-Macaulay, môđun giả Cohen-Macaulay suy rộng.
7. Tổng quan và cấu trúc luận án
7.1. Tổng quan luận án
Cho (R, m) là vành giao hoán, địa phương, Noether với iđêan cực
đại duy nhất m. Cho M là R-môđun hữu hạn sinh có chiều d. Với I là
iđêan của R, kí hiệu Var(I) là tập các iđêan nguyên tố của R chứa I.
Ký hiệu R và M tương ứng là đầy đủ theo tôpô m-adic của R và M .
Quỹ tích không Cohen-Macaulay của M , ký hiệu nCM(M ), là tập các
iđêan nguyên tố p sao cho Mp không Cohen-Macaulay. Quỹ tích không
Cohen-Macaulay đã được R. Hartshorne [28] đề cập đến vào năm 1966.
Giả sử R là thương của vành Gorenstein địa phương, R. Hartshorne [28]
đã chỉ ra rằng quỹ tích này là tập đóng theo tôpô Zariski. Tính đóng của
quỹ tích không Cohen-Macaulay cũng được chỉ ra bởi P. Schenzel [53].
Chú ý rằng khi quỹ tích không Cohen-Macaulay là tập đóng thì chiều
của nó được định nghĩa. Một số kết quả về chiều của quỹ tích không
Cohen-Macaulay trong mối quan hệ với kiểu đa thức và chiều của các
môđun đối đồng điều địa phương đã được chứng minh bởi N. T. Cường
[10], [11].
Cho đến nay việc nghiên cứu quỹ tích không Cohen-Macaulay chỉ
tập trung vào tính đóng hoặc tính toán chiều của nó mà chưa quan tâm
đến vấn đề mô tả quỹ tích này. Một số quỹ tích khác của môđun hữu
hạn sinh liên quan đến tính Cohen-Macaulay còn chưa được nghiên cứu.
Trong luận án này, chúng tôi quan tâm đến vấn đề mô tả quỹ tích không
Cohen-Macaulay, quỹ tích không Cohen-Macaulay suy rộng, quỹ tích
không Cohen-Macaulay dãy và không Cohen-Macaulay suy rộng dãy,
11


quỹ tích giả Cohen-Macaulay và giả Cohen-Macaulay suy rộng. Đồng
thời chúng tôi nghiên cứu các quỹ tích này trong mối quan hệ với tính
catenary, tính catenary phổ dụng, điều kiện Serre, chiều của môđun đối
đồng điều địa phương và kiểu đa thức.
Kết quả đầu tiên của luận án là đưa ra một số công thức tính
quỹ tích không Cohen-Macaulay và chiều của nó. Chúng tôi mô tả quỹ
tích không Cohen-Macaulay qua các tập giả giá giới thiệu bởi M. Brodmann và R. Y. Sharp [5]. Nhắc lại rằng giả giá thứ i của M , kí hiệu là
PsuppiR (M ), được cho bởi công thức
i−dim(R/p)

PsuppiR (M ) = {p ∈ Spec(R) | HpRp

(Mp ) = 0}.

Khi đó, quỹ tích không Cohen-Macaulay được mô tả trong Định lý 2.1.5
và Hệ quả 2.1.6. Ở đây, chúng tôi phát biểu gộp lại như sau:
Định lý 2.1.5. nCM(M ) =
0 i
(PsuppiR (M ) ∩ PsuppjR (M )). Hơn

nữa, nếu R là catenary và M đẳng chiều thì
d−1

PsuppiR (M ).

nCM(M ) =
i=0

Tiếp theo, chúng tôi xét mối quan hệ giữa quỹ tích không CohenMacaulay với các môđun đối đồng điều địa phương và tính không trộn
lẫn của các vành R/p với p ∈ SuppR (M ). Theo M. Nagata [36], môđun
M được gọi là không trộn lẫn nếu dim(R/p) = d với mọi p ∈ AssR M .
Với mỗi số nguyên i, đặt ai (M ) = AnnR Hmi (M ). Đặt
a(M ) = a0 (M )a1 (M ) . . . ad−1 (M ).

Định lý 2.2.1. Đặt T (M ) =

Var(ai (M ) + aj (M )). Khi đó các
0 i
khẳng định sau là đúng.
12


Luận vận đậy đu ở file:Luận vận Full














Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay

×