Tải bản đầy đủ

GIỚI hạn bài tập tổng hợp chương giới hạn (có đáp án) file word


http://dethithpt.com

CHƯƠNG IV. GIỚI HẠN – TẬP 3

Mục lục
..................................................................................................2
BÀI TẬP TỔNG HỢP......................................................................2
TỔNG HỢP LẦN 1. CHƯƠNG IV. GIỚI HẠN......................................2
ĐÁP ÁN CHƯƠNG IV.............................................................................11

TỔNG HỢP LẦN 3.......................................................................19
CHƯƠNG IV. GIỚI HẠN................................................................19
ĐÁP ÁN...............................................................................................24

BÀI TẬP TỔNG HỢP
TỔNG HỢP LẦN 1. CHƯƠNG IV. GIỚI HẠN
Với mỗi câu từ số 1 đến 91 dưới đây đều có 4 phương án lựa chọn,
trong đó chỉ có một phương án đúng. Hãy khoanh tròn vào chữ cái
đứng đầu câu trả lời mà em cho là đúng.
u)

(Ta quy ước viết lim un thay cho lim
n→∞ n
http://dethithpt.com|

2


http://dethithpt.com

CHƯƠNG IV. GIỚI HẠN – TẬP 3

Câu 1. Dãy số nào sau đây có giới hạn khác 0?
A.

1
;
n

B.

1
n

;

C.

n+ 1
;
n

D.

sinn
n

.

Câu 2. Dãy số nào sau đây có giới hạn bằng 0?
n



n

n

n

 4
 4
 5
A.  ÷ ;
B.  − ÷ ;
C.  − ÷ ;
 3
 3
 3
Câu 3. Dãy số nào sau đây có giới hạn bằng 0?
A. ( 0,999) ;

B. ( −1,01) ;

C. ( 1,01) ;

D. ( −2,001) .

n

n

n

n

Câu 4. Dãy nào sau đây không có giới hạn?
A. ( 0,99) ;
n

Câu 5.

( −1)
lim

 1
D.  ÷ .
 3

B. ( −1) ;
n

C. ( −0,99) ;

D. ( −0,89) .

C. 0;

1
D. − .
4

C.

4
;
5

4
D. − .
5

C.

2
;
3

D.

n

n

n

có giá trị là bao nhiêu?
n+ 3
1
A. − ;
B. −1;
3
 3− 4n 
Câu 6. lim 
÷ có giá trị là bao nhiêu?
 5n 
3
3
A. ;
B. − ;
5
5
n
n
2 +3
Câu 7. lim
có giá trị là bao nhiêu?
3n
A. 0;

B. 1;

cos2n
có giá trị là bao nhiêu?
n
A. 0;
B. 2 ;
C. 2;
3
3n − 2n + 1
Câu 9. lim 4
có giá trị là bao nhiêu?
4n + 2n + 1
3
A. 0 ;
B. +∞ ;
C. ;
4
4
3n − 2n + 3
Câu 10.
có giá trị là bao nhiêu?
lim 4
4n + 2n + 1
3
A. 0;
B. +∞ ;
C. ;
4
2
4
2n − 3n
Câu 11.
có giá trị là bao nhiêu?
lim 4
4n + 5n + 1
3
1
A. − ;
B. 0 ;
C. ;
4
2

5
.
3

Câu 8. lim 4 −

D. 4.

D.

2
.
7

D.

4
.
7

D.

3
.
4

http://dethithpt.com|

3


http://dethithpt.com

3n4 − 2n + 4
có giá trị là bao nhiêu?
4n2 + 2n + 3
3
4
B. +∞ ;
C. ;
D. .
4
3
3
2
lim −3n + 2n − 5 có giá trị là bao nhiêu?

Câu 12.

lim

A. 0;

(

Câu 13.

(

Câu 14.
A. −∞ ;

)

B. 0;

D. +∞ .

C. 2;

4n2 + 5 − n + 4 có giá trị là bao nhiêu?
2n − 1
B. 1;
C. 2;
D. +∞ .

Câu 15.

lim

A. 0;

lim

Câu 16.
A. +∞ ;

(

)

n + 10 − n có giá trị là bao nhiêu?

B. 10;

C.

D. 0.

10 ;

3− 2n + 4n
có giá trị là bao nhiêu?
4n2 + 5n − 3
3
4
B. 1;
C. ;
D. − .
4
3
Nếu lim un = L thì lim un + 9 có giá trị là bao nhiêu?
2

Câu 17.

lim

A. 0 ;
Câu 18.
A. L + 9 ;

B. L + 3 ;

D. L + 3 .
L+9;
1
Nếu lim un = L thì lim 3
có giá trị là bao nhiêu?
un + 8

Câu 19.
1
L+ 8

Câu 20.
A. 1;
Câu 21.
A. 0;
Câu 22.
A. +∞ ;
Câu 23.
A. 0;
Câu 24.

)

B. −6;
C. −∞ ;
D. +∞ .
4
2
lim 2n + n − 5n có giá trị là bao nhiêu?

A. −3;

A.

CHƯƠNG IV. GIỚI HẠN – TẬP 3

;

1

B.

L+8

C.

;

C.

1
3

L+2

;

D.

1
3

L+8

.

n+ 4

lim

có giá trị là bao nhiêu?
n+1
B. 2;
C. 4;
D.
2
1− 2n + 2n
có giá trị là bao nhiêu?
lim 2
5n + 5n − 3
1
2
B. ;
C. ;
D.
5
5
104 n
có giá trị là bao nhiêu?
lim 4
10 + 2n
B. 10000;
C. 5000;
D.
1+ 2 + 3+ ... + n
lim
có giá trị là bao nhiêu?
2n2
1
1
B. ;
C. ;
D.
4
2

+∞ .

2
− .
5

1.

+∞ .

n3 + n có giá trị là bao nhiêu?
lim
6n + 2
3

http://dethithpt.com|

4


http://dethithpt.com

A.

1
;
6

B.

1
;
4

lim n

Câu 25.
A. +∞ ;
Câu 26.
A.

CHƯƠNG IV. GIỚI HẠN – TẬP 3

2
;
5

Câu 27.
A. −∞ ;
Câu 28.

(

C.

)

3

2
;
6

D. 0 .

n2 + 1 − n2 − 3 có giá trị là bao nhiêu?

B. 4;
C. 2;
n + sin2n
lim
có giá trị là bao nhiêu?
n+ 5
1
B. ;
C. 0 ;
5
lim 3n − 4n3 có giá trị là bao nhiêu?

(

D. −1.

D. 1.

)

n2 − 2n
;
5n + 5n2
1− 2n2
C. un =
;
5n + 5
Câu 29.
A. un = 3n2 − n3 ;

B. −4;
C. 3 ;
D. +∞ .
Dãy số nào sau đây có giới hạn bằng 0?
1− 2n
B. un =
;
5n + 5
1− 2n
D. un =
.
5n + 5n2
Dãy số nào sau đây có giới hạn là +∞ ?
B. un = n2 − 4n3 ;

C. un = 3n2 − n ;
Câu 30.
A. un = n4 − 3n3 ;

D. un = 3n3 − n4 .
Dãy số nào sau đây có giới hạn là −∞ ?
B. un = 3n3 − n4 ;

A. un =

C. un = 3n2 − n ;

D. un = −n2 + 4n3 .
−1
Tổng của cấp số nhân vô hạn 1 ; − 1 ;...; ( )
2 4
2n

n+1

Câu 31.

;... có giá

trị là bao nhiêu?
A. 1;

B.

1
;
3

1
C. − ;
3

2
D. − .
3

−1
Tổng của cấp số nhân vô hạn − 1 ; 1 ;...; ( ) ;... có giá
2 4
2n
n

Câu 32.

trị là bao nhiêu?
1
1
A. ;
B. − ;
3
3

2
C. − ;
3

D. −1.

−1
Tổng của cấp số nhân vô hạn 1 ; − 1 ;...; ( )
3 9
3n

n+1

Câu 33.

trị là bao nhiêu?
1
1
A. ;
B. ;
4
2
Câu 34.

C.

3
;
4

;... có giá

D. 4.

Tổng của cấp số nhân vô hạn

1 1
1
; ;...; n−1 ;... có giá trị
2 6
2.3

là bao nhiêu?
http://dethithpt.com|

5


http://dethithpt.com

A.

1
;
3

CHƯƠNG IV. GIỚI HẠN – TẬP 3

B.

3
;
8

C.

3
;
4

D.

3
.
2

−1
Tổng của cấp số nhân vô hạn 1 ; − 1 ;...; ( ) ;... có giá
2 6
2.3n−1
n+1

Câu 35.

trị là bao nhiêu?
8
3
A. ;
B. ;
3
4

C.

2
;
3

D.

3
.
8

−1
Tổng của cấp số nhân vô hạn 1; − 1 ; 1 ;...; ( ) ;... có
2 4
2n−1
giá trị là bao nhiêu?
2
2
3
A. − ;
B. ;
C. ;
D. 2.
3
3
2
Câu 37.
Dãy số nào sau đây có giới hạn là +∞ ?
2
1+ 2n
n − 2n
1+ n2
u
=
A. un =
;
B.
;
C.
;
D.
u
=
n
n
5n + 5
5n + 5
5n + 5n2
n+1

Câu 36.

un =

n2 − 2
.
5n + 5n3

Dãy số nào sau đây có giới hạn là +∞ ?
2007 + 2008n
9n + 7n
A. un =
;
B. un =
;
2
n+ 1
n+ n
C. un = 2008m− 2007n2 ;
D. un = n2 + 1.
39.
Trong các giới hạn sau đây, giới hạn nào bằng −1?
2
2n − 3
2n2 − 3
2n2 − 3
2n3 − 3
A. lim
;
B. lim
;
C. lim
;
D. lim
−2n3 − 4
−2n2 − 1
−2n3 + 2n2
−2n2 − 1
.
40.
Trong các giới hạn sau đây, giới hạn nào bằng 0?
2
2n − 3
2n − 3n3
2n2 − 3n4
3+ 2n3
A. lim
;
B.
;
C.
;
D.
.
lim
lim
lim
−2n3 − 4
−2n2 − 1
−2n3 + 2n2
2n2 − 1
41.
Trong các giới hạn sau đây, giới hạn nào bằng +∞ ?
2
2n + 3
2n − 3n3
2n2 − 3n4
3− 2n3
A. lim 3
;
B. lim
;
C.
;
D.
.
lim
lim
n +4
2n2 − 1
−2n3 + 2n2
2n2 − 1
1
42.
Dãy số nào sau đây có giới hạn bằng ?
5
2
2
1

2
n
n − 2n
1− 2n
A. un =
; B. un =
;
C. un =
;
D.
2
5n + 5
5n + 5
5n + 5n

Câu 38.

2

Câu

Câu

Câu

Câu

un =

1− 2n
.
5n + 5n2

Câu 43.
A. −2;
Câu 44.

lim ( 3) có giá trị là bao nhiêu?
x→−1
B. −1;
C. 0;
lim x2 − 2x + 3 có giá trị là bao nhiêu?
x→−1

(

)

D. 3.

http://dethithpt.com|

6


http://dethithpt.com

A. 0;
Câu 45.
A. −15;
Câu 46.
A. 0;
Câu 47.
2
A. − ;
5
Câu 48.
A. +∞ ;
Câu 49.
A. −∞ ;
Câu 50.
A.

1
;
9

Câu 51.
A.

1
;
3

Câu 52.
A.

4
;
5

Câu 53.
A. −

13
;
6

Câu 54.
4
A. − ;
9
Câu 55.

CHƯƠNG IV. GIỚI HẠN – TẬP 3
B. 2;
C. 4;
2
lim x − 3x − 5 có giá trị là bao nhiêu?
x→ 2

(

)

D. 6.

B. −7 ;
C. 3;
D.
4
3x − 2x + 3
có giá trị là bao nhiêu?
lim
x→+∞ 5x4 + 3x + 1
4
3
B. ;
C. ;
D.
9
5
3x4 − 2x5
có giá trị là bao nhiêu?
lim
x→+∞ 5x4 + 3x + 2
3
B. ;
C. −∞ ;
D.
5
3x2 − x5
có giá trị là bao nhiêu?
lim 4
x→+∞ x + x + 5
B. 3;
C. −1;
D.
4
5
3x − 2x
có giá trị là bao nhiêu?
lim
x→+∞ 5x4 + 3x6 + 1
3
2
B. ;
C. − ;
D.
5
5
3x4 − 2x5
có giá trị là bao nhiêu?
lim 4
x→1 5x + 3x6 + 1
3
2
B. ;
C. − ;
D.
5
5
3x4 − 2x5
có giá trị là bao nhiêu?
lim 4
x→−1 5x − 3x2 + 1
5
3
B. ;
C. ;
D.
9
5
3x4 − x5
có giá trị là bao nhiêu?
lim 4
x→−1 x + x + 5
4
2
B. ;
C. ;
D.
7
5
3x4 − 2x
có giá trị là bao nhiêu?
lim 4
x→−2 x − 3x + 2
7
11
B. ;
C.
;
D.
4
6
x2 − x3
có giá trị là bao nhiêu?
lim 2
x→−2 x − x + 3
12
4
B.
;
C. ;
D.
5
3
x4 − 2x5
có giá trị là bao nhiêu?
lim 4
x→1 2x + 3x5 + 2

+∞ .

+∞ .

+∞ .

−∞ .

0.

2
− .
3

5
.
3

2
.
7

13
.
6

+∞ .

http://dethithpt.com|

7


http://dethithpt.com

A. −

1
;
12

Câu 56.
A. −
C.

10
;
7

6
;
7

A. 9;
Câu 58.

1
.
2

1
;
15

B.

1
;
3

lim

x4 − 4x2 + 3
có giá trị là bao nhiêu?
7x2 + 9x − 1

B.

1
;
3

C.

C.

3
;
5

D.

35
;
9

2
.
3

D. +∞ .

x4 − 4x2 + 3x
có giá trị là bao nhiêu?
x2 + 16x − 1
3
3
;
C. ;
D. +∞ .
8
8

lim

x→−1

1
;
8

D. −5.

C. 1;

3x4 + 4x5 + 3
có giá trị là bao nhiêu?
9x5 + 5x4 + 1

x→−2

Câu 60.

B.

1− x3
có giá trị là bao nhiêu?
lim−
x→1
3x2 + x

Câu 61.
A. 0;

B. 1;

C.

1
;
2

D.

x+ 2
có giá trị là bao nhiêu?
x→1 x − 1
1
B. ;
C. −∞ ;
2

1
.
3

lim−

Câu 62.
1
A. − ;
2
Câu 63.

lim

10 − x3
có giá trị là bao nhiêu?
3x2 + x

B.

11
;
4

x→−1

3
;
2

Câu 64.
A. 0;
Câu 65.

B. 5;
x→+∞

Câu 59.

A.

D.

D. −∞ .

lim

A. 0;

A.

1
2
B. − ;
C. − ;
7
3
3
x+ x
có giá trị là bao nhiêu?
lim 2
x→−2 x − x + 1
10
B. − ;
3

lim 4x3 − 2x − 3 có giá trị là bao nhiêu?
x→−1

Câu 57.

A.

CHƯƠNG IV. GIỚI HẠN – TẬP 3

lim

x→+∞

(

C.

)

9
;
2

D. +∞ .

D.

11
.
2

x + 3 − x − 5 có giá trị là bao nhiêu?

C. −∞ ;
D. +∞ .
3+ 5 ;
4
3
2
2x + x − 2x − 1
có giá trị là bao nhiêu?
lim
x→+∞
x − 2x4

B.

http://dethithpt.com|

8


http://dethithpt.com

A. – 2;

B. – 1;
lim x

Câu 66.
A.

CHƯƠNG IV. GIỚI HẠN – TẬP 3

x→+∞

5
2

;

Câu 67.
A. +∞ ;
Câu 68.
A. +∞ ;
Câu 69.
A. +∞ ;
Câu 70.
A. +∞ ;
Câu 71.
A. 0;
Câu 72.
A. 0;
Câu 73.
A. +∞ ;
Câu 74.
A. +∞ ;
Câu 75.
A. +∞ ;
Câu 76.
A. – 8;

B.

(

5
;
2

lim x

x→+∞

B. 0;

(

)

C. 1;

D. 2.

x + 5 − x có giá trị là bao nhiêu?
2

C.

D. +∞ .

5;

)

x2 + 1 − x có giá trị là bao nhiêu?
C.

1
;
2

D.

y4 − 1
lim
có giá trị là bao nhiêu?
y→1 y − 1
B. 4;
C. 2;
4
4
y −a
lim
có giá trị là bao nhiêu?
y→ a y − a
B. 2a3 ;
C. 4a3 ;
y4 − 1
lim 3
có giá trị là bao nhiêu?
y→1 y − 1
B. 0;

C.

3
;
4

1
.
2

D. −∞ .

D. 4a2 .

D.

4
.
3

4x2 + 2 − x + 3 có giá trị là bao nhiêu?
x→+∞
2x − 3
B. 1;
C. 2;
D. +∞ .
lim

x + 1 − x2 + x + 1 có giá trị là bao nhiêu?
x→0
x
1
B. – 1;
C. − ;
D. −∞ .
2
x2 − 3x + 2
có giá trị là bao nhiêu?
lim
x→ 2
2x − 4
3
1
1
B. ;
C. ;
D. − .
2
2
2
2
x − 12x + 35
có giá trị là bao nhiêu?
lim
x→ 2
x− 5
B. 5;
C. – 5;
D. – 14.
2
x − 12x + 35
có giá trị là bao nhiêu?
lim
x→ 5
5x − 25
1
2
2
B. ;
C. ;
D. − .
5
5
5
2
x + 2x − 15
có giá trị là bao nhiêu?
lim
x→−5
2x + 10
1
B. – 4;
C. ;
D. +∞ .
2
lim

http://dethithpt.com|

9


http://dethithpt.com

Câu 77.

x2 − 2x − 15
có giá trị là bao nhiêu?
x→ 5
2x − 10
B. – 1;
C. 4;
D.
2
x − 9x − 20
có giá trị là bao nhiêu?
lim
x→ 5
2x + 10
3
B. – 2;
C. − ;
D.
2
3x4 − 2x5
có giá trị là bao nhiêu?
lim 4
x→−∞ 5x + 3x + 2
3
B. ;
C. −∞ ;
D.
5
x3 + 1
có giá trị là bao nhiêu?
lim 2
x→−1 x + x
B. – 1;
C. 0;
D.
lim

A. – 4;
Câu 78.
5
A. − ;
2
Câu 79.
2
A. − ;
5
Câu 80.
A. – 3;

x→+∞

A. −∞ ;
Câu 82.
1
A. − ;
3

lim

Câu 83.
A. +∞ ;
Câu 84.
3
2

;

Câu 85.
8
A. − ;
3
Câu 86.
A. +∞ ;
Câu 87.

+∞ .

+∞ .

+∞ .

1.

x
có giá trị là bao nhiêu?
x −1
B. 0;
C. 1;
D. +∞ .
2
x − 3x + 2
có giá trị là bao nhiêu?
lim
x→1
x3 − 1
1
B. ;
C. 0;
D. 1.
3
lim ( x + 2)

Câu 81.

A.

CHƯƠNG IV. GIỚI HẠN – TẬP 3

x→+∞

(

3

)

x + 3 − x − 5 có giá trị là bao nhiêu?

B. 4;
C. 0;
2
3x − 7x
lim
có giá trị là bao nhiêu?
x→ 3
2x + 3

D. −∞ .

B. 2;

D. +∞ .

C. 6;

6x3 − x2 + x
có giá trị là bao nhiêu?
lim
x→−1
x− 2
4
8
B. – 2;
C. − ;
D. .
3
3
2
x +1
có giá trị là bao nhiêu?
lim+
x→1 x − 1
B. 2;
C. 1;
D. −∞ .
Cho f ( x) =

x + 2 − 2− x
với x ≠ 0. Phải bổ sung thêm
x

giá trị f ( 0) bằng bao nhiêu thì hàm số liên tục trên ¡ .
A. 0;

B. 1;

C.

1
2

;

D.

1
2 2

.

http://dethithpt.com|

10


http://dethithpt.com

CHƯƠNG IV. GIỚI HẠN – TẬP 3

Cho f ( x) =

Câu 88.

x
x + 1− 1

với x ≠ 0. Phải bổ sung thêm giá

trị f ( 0) bằng bao nhiêu thì hàm số liên tục trên ¡ .
A. 0;

B. 1;

C.

Cho f ( x) =

Câu 89.

2;

D. 2.

x2 − 5x
với x ≠ 0. Phải bổ sung thêm giá trị
3x

f ( 0) bằng bao nhiêu thì hàm số liên tục trên ¡ .
A.

5
;
3

1
;
3
5
D. − .
3
2
x
vôùi x < 1, x ≠ 0

 x
vôùi x = 0
Cho hàm số f ( x) = 0
. Hàm số f ( x)

vôùi x ≥ 1
 x

B.

C. 0;

Câu 90.

liên tục tại:
A. mọi điểm thuộc ¡ ;
B. mọi điểm trừ x = 0 ;
C. mọi điểm trừ x = 1;
D. mọi điểm trừ x = 0 và x = 1.
Câu 91.
Hàm số f ( x) có đồ thị như hình bên không liên tục tại
điểm có hoành độ là bao nhiêu?

A.
B.
C.
D.

x = 0;
x = 1;
x = 2;
x = 3.

ĐÁP ÁN CHƯƠNG IV

Câu 1 Câu 2 Câu 3 Câu 4 Câu 5 Câu 6 Câu 7 Câu 8 Câu 9
C

D

A

B

C

D

B

C

Câu
10

A

http://dethithpt.com|

C

11


http://dethithpt.com

CHƯƠNG IV. GIỚI HẠN – TẬP 3

Câu
11

Câu
12

Câu
13

Câu
14

Câu
15

Câu
16

Câu
17

Câu
18

Câu
19

Câu
20

A

B

C

D

B

D

B

C

D

A

Câu
21

Câu
22

Câu
23

Câu
24

Câu
25

Câu
26

Câu
27

Câu
28

Câu
29

Câu
30

C

C

B

A

C

D

A

D

C

B

Câu
31

Câu
32

Câu
33

Câu
34

Câu
35

Câu
36

Câu
37

Câu
38

Câu
39

Câu
40

B

B

A

C

D

B

C

D

B

A

Câu
41

Câu
42

Câu
43

Câu
44

Câu
45

Câu
46

Câu
47

Câu
48

Câu
49

Câu
50

C

A

D

D

B

C

C

D

D

A

Câu
51

Câu
52

Câu
53

Câu
54

Câu
55

Câu
56

Câu
57

Câu
58

Câu
59

Câu
60

D

A

D

C

B

A

B

D

B

B

Câu
61

Câu
62

Câu
63

Câu
64

Câu
65

Câu
66

Câu
67

Câu
68

Câu
69

Câu
70

A

C

D

A

B

B

D

B

C

D

Câu
71

Câu
72

Câu
73

Câu
74

Câu
75

Câu
76

Câu
77

Câu
78

Câu
79

Câu
80

B

A

C

C

D

B

C

B

D

A

Câu
81

Câu
82

Câu
83

Câu
84

Câu
85

Câu
86

Câu
87

Câu
88

Câu
89

Câu
90

C

A

C

B

D

A

C

D

D

A

Câu
91
http://dethithpt.com|

12


http://dethithpt.com

CHƯƠNG IV. GIỚI HẠN – TẬP 3

B
TỔNG HỢP LẦN 2.
CHƯƠNG IV: GIỚI HẠN
Chọn mệnh đề đúng trong các mệnh đề sau:

Câu 1.

A. Nếu lim u n = +∞ , thì lim u n = +∞ .

B. Nếu lim u n = +∞ , thì lim u n = −∞ .

C. Nếu lim u n = 0 , thì lim u n = 0 .

D. Nếu lim u n = −a , thì lim u n = a .

Cho dãy số (un) với un =

Câu 2.

u n +1
n
≤ 1 . Chọn giá trị đúng của limun trong
n và
un
4

các số sau:
A.

1
.
4

B.

1
.
2

C.

3
.
4

D. 1.


n 2 cos 2n 
 là:
Câu 3. Kết quả đúng của lim  5 −
n 2 + 1 

A. 4.
Câu 4.

A. –
Câu 5.

A. –
Câu 6.

B. 5.
Kết quả đúng của lim

5
.
2

B. –

C.
− n 2 + 2n + 1
3n 4 + 2

2
.
3

Giới hạn dãy số (un) với un =

A. –∞.

D.

1
.
4

2 − 5 n−2
là:
3 n + 2 .5 n

B. 1.

Kết quả đúng của lim
3
.
3

C. –4.

B. +∞.

5
.
2

D. –

25
.
2


C. –

1
.
2

D.

1
.
2

3n − n 4
là:
4n − 5
C.

3
.
4

D. 0.

3 n − 4.2 n −1 − 3
Câu 7. lim
bằng :
3.2 n + 4 n
A. +∞.
Câu 8.

B. –∞.

Chọn kết quả đúng của lim

C. 0.

D. 1.

n 3 − 2n + 5
:
3 + 5n
http://dethithpt.com|

13


http://dethithpt.com

A. 5.

CHƯƠNG IV. GIỚI HẠN – TẬP 3

B.

2
.
5

Giá trị đúng của lim

Câu 9.

A. +∞.
Câu 10.

(

C. –2.

D. 0.

C. 2.

D. –2.

C. –2.

D. –∞.

)

B.


 2

− 2n 3  bằng:
lim  n sin
5


B. 0.

Giá trị đúng của lim

A. –1.
Câu 13.

)

Giá trị đúng của lim 3 n − 5 n là:

A. +∞.
Câu 12.

D. +∞.

n 2 − 1 − 3n 2 + 2 là:

B. –∞.

A. –∞.
Câu 11.

(

C. –∞.

[ n(

)]

n + 1 − n − 1 là:

B. 0.

C. 1.

Cho dãy số (un) với un = (n − 1)

D. +∞.

2n + 2
. Chọn kết quả đúng của limu n
n + n2 −1
4

là:
A. –∞.
Câu 14.

lim

B. 0.

lim

A. +∞.
Câu 16.

D. +∞.

C. 0.

D. –∞.

C. 0.

D. –∞.

C. +∞.

D. –∞.

5n − 1
bằng :
3n + 1

A. +∞.
Câu 15.

C. 1.

B. 1.
10
n4 + n2 +1

bằng :
B. 10.

lim 5 200 − 3n 5 + 2n 2 bằng :

A. 0.

B. 1.

1

u n = 2
Câu 17. Cho dãy số có giới hạn (u n) xác định bởi : 
. Tìm két quả
u n +1 = 1 , n ≥ 1

2 − un
đúng của limun .
A. 0.
Câu 18.

A.

B. 1.
Tìm giá trị đúng của S =

2 +1.

B. 2.

C. –1.

D.

1
.
2

D.

1
.
2

1
 1 1 1

2 1 + + + ... + n + ......  .
2
 2 4 8

C. 2 2 .

http://dethithpt.com|

14


http://dethithpt.com

CHƯƠNG IV. GIỚI HẠN – TẬP 3

4 n + 2 n +1
Câu 19. Lim
bằng :
3n + 4 n+ 2
4

A. 0.

B.

Câu 20.

Tính giới hạn: lim

A. 1.

C.

Tính giới hạn: lim

A. 0.

B.

1
.
4

D. +∞.

n +1 − 4
n +1 + n

B. 0.

Câu 21.

Câu 22.

1
.
2

C. –1.

D.

1
.
2

1 + 3 + 5 + ...... + (2n + 1)
3n 2 + 4
1
.
3

C.

2
.
3

D. 1.

3
.
2

D. Không có

2
.
3

D. 2.

 1
1
1 
+
+ ...... +
Tính giới hạn: lim 
n(n + 1) 
1.2 2.3

A. 0.

B. 1.

C.

giới hạn.
Câu 23.

1

1
1
+ ...... +
Tính giới hạn: lim  +
n(2n + 1) 
1.3 3.5

A. 1.
Câu 24.

A.

A.

A. 1.
Câu 27.

B. 1.

C. 0.

D.

2
.
3

D.

3
.
2

D.

3
.
2

 1
1
1 
+
+ ...... +
Tính giới hạn: lim 
n(n + 3) 
1.4 2.5

11
.
18

Câu 26.

C.

1
1
1 
+ ...... +
Tính giới hạn: lim  +
n(n + 2) 
1.3 2.4

3
.
2

Câu 25.

B. 0.

B. 2.

C. 1.


1 
1  
1 
Tính giới hạn: lim 1 − 2 1 − 2 .....1 − 2 
 2  3   n 
B.

1
.
2

Chọn kết quả đúng của lim 3 +

C.

1
.
4

n2 −1 1
.

3 + n2 2n
http://dethithpt.com|

15


http://dethithpt.com

A. 4.
Câu 28.

CHƯƠNG IV. GIỚI HẠN – TẬP 3

B. 3.
Cho hàm số f ( x) =

C. 2.

D.

1
.
2

x2 −1
và f(2) = m2 – 2 với x ≠ 2. Giá trị của m để f(x)
x +1

liên tục tại x = 2 là:
A.

3.

Câu 29.

B. – 3 .

C. ±

3.

D. ± 3.

Cho hàm số f ( x) = x 2 − 4 . Chọn câu đúng trong các câu sau:

(I) f(x) liên tục tại x = 2.
(II) f(x) gián đoạn tại x = 2.
(III) f(x) liên tục trên đoạn [ − 2;2] .
A. Chỉ (I) và (III).
(III).

B. Chỉ (I).

C. Chỉ (II).

D. Chỉ (II) và


x2 +1
, x ≠ 3, x ≠ 2
 3
Câu 30. Cho hàm số f ( x) =  x − x + 6
. Tìm b để f(x) liên tục tại x =
, x = 3, b ∈ R

b + 3
3.
A.

3.

Câu 31.

B. – 3 .

C.

2 3
.
3

D. –

2 3
.
3

Tìm khẳng định đúng trong các khẳng định sau:

I. f ( x) =
II. f ( x ) =

1
x2 −1

liên tục trên R.

sin x
có giới hạn khi x → 0.
x

III. f ( x ) = 9 − x 2 liên tục trên đoạn [–3;3].
A. Chỉ (I) và (II).

B. Chỉ (I) và (III).

C. Chỉ (II).

D. Chỉ (III).

 sin 5 x
,x ≠ 0

Câu 32. Cho hàm số f ( x) =  5 x
. Tìm a để f(x) liên tục tại x = 0.
a + 2 , x = 0
A. 1.
Câu 33.

B. –1.

C. –2.

D. 2.

Tìm khẳng định đúng trong các khẳng định sau:

I. f(x) liên tục trên đoạn [a;b] và f(a).f(b) > 0 thì tồn tại ít nhất số c ∈ (a;b)
sao cho f(c) = 0.
II. f(x) liên tục trên (a;b] và trên [b;c) nhưng không liên tục trên (a;c).

http://dethithpt.com|

16


http://dethithpt.com

A. Chỉ I đúng.
sai.
Câu 34.

CHƯƠNG IV. GIỚI HẠN – TẬP 3

B. Chỉ II đúng.

C. Cả I và II đúng.

D. Cả I và II

Tìm khẳng định đúng trong các khẳng định sau:

I. f(x) liên tục trên đoạn [a;b] và f(a).f(b) < 0 thì phương trình f(x) = 0 có
nghiệm.
II. f(x) không liên tục trên [a;b] và f(a).f(b) ≥ 0 thì phương trình f(x) = 0 vô
nghiệm.
A. Chỉ I đúng
sai.
Câu 35.

B. Chỉ II đúng.

C. Cả I và II đúng.

D. Cả I và II

Tìm khẳng định đúng trong các khẳng định sau:

I. f ( x) =

x +1
liên tục với mọi x ≠ 1.
x −1

II. f ( x ) = sin x liên tục trên R.
III. f ( x ) =

x
x

liên tục tại x = 1..

A. Chỉ I đúng.
(III).

B. Chỉ (I) và (II).

C. Chỉ (I) và (III).

D. Chỉ (II) và

 x2 − 3
,x ≠ 3

Câu 36. Cho hàm số f ( x) =  x − 3
. Tìm khẳng định đúng trong các khẳng
2 3 , x = 3

định sau:
I. f(x) liên tục tại x =

3.

II. f(x) gián đoạn tại x =

3.

III. f(x) liên tục trên R.
A. Chỉ (I) và (II).
đều đúng.
Câu 37.

B. Chỉ (II) và (III).

C. Chỉ (I) và (III). D.

Cả

(I),(II),(III)

Tìm khẳng định đúng trong các khẳng định sau:

I. f(x) = x5 – 3x2 +1 liên tục trên R.
II. f ( x ) =

1
x2 −1

liên tục trên khoảng (–1;1).

III. f ( x ) = x − 2 liên tục trên đoạn [2;+∞).
A. Chỉ I đúng.
(III).

B. Chỉ (I) và (II).

C. Chỉ (II) và (III).

D. Chỉ (I) và

http://dethithpt.com|

17


http://dethithpt.com

CHƯƠNG IV. GIỚI HẠN – TẬP 3

( x + 1) 2 , x > 1
 2
Câu 38. Cho hàm số f ( x) =  x + 3 , x < 1 . Tìm k để f(x) gián đoạn tại x = 1.
k 2
,x =1

A. k ≠ ± 2.

B. k ≠ 2.

C. k ≠ –2.

D. k ≠ ± 1.

3 − 9 − x

,0 < x < 9
x

,x = 0
Câu 39. Cho hàm số f ( x ) = m
. Tìm m để f(x) liên tục trên [0;+∞)
3
,x >9

 x
là.
A.

1
.
3

Câu 40.

B.

1
.
2

Cho hàm số f ( x ) =

C.

1
.
6

D. 1.

x2 +1
. f(x) liên tục trên các khoảng nào sau
x 2 + 5x + 6

đây ?
A. (–3;2).

B. (–3;+∞)

C. (–∞; 3).

D. (2;3).

Cho hàm số f(x) = x3 – 1000x2 + 0,01 . phương trình f(x) = 0 có nghiệm
thuộc khoảng nào trong các khoảng sau đây ?
Câu 41.

I. (–1; 0).

II. (0; 1).

A. Chỉ I.

B. Chỉ I và II.

III. (1; 2).
C. Chỉ II.

D. Chỉ III.

 tan x
,x ≠ 0

Câu 42. Cho hàm số f ( x) =  x
. f(x) liên tục trên các khoảng nào sau đây
,x = 0
0
?
 π
A.  0;  .
 2
Câu 43.

π

B.  − ∞;  .
4


 π π
C.  − ;  .
 4 4

D. ( − ∞;+∞) .

a 2 x 2
, x ≤ 2, a ∈ R
Cho hàm số f ( x ) = 
. Giá trị của a để f(x) liên tục
2
( 2 − a ) x , x > 2

trên R là:
A. 1 và 2.

Câu 44.

Cho hàm số

B. 1 và –1.

C. –1 và 2.

D. 1 và –2.

x 2 , x ≥ 1

 2x3
f ( x) = 
, 0 ≤ x < 1 . Tìm khẳng định đúng trong các
1 + x
 x sin x, x < 0


khẳng định sau:
http://dethithpt.com|

18


CHƯƠNG IV. GIỚI HẠN – TẬP 3

http://dethithpt.com

A. f(x) liên tục trên R.
tục trên R\ { 0} .

B.

f(x)

liên

C. f(x) liên tục trên R\ {1} .

D.

f(x)

liên

tục trên R\ { 0;1} .

TỔNG HỢP LẦN 3.
CHƯƠNG IV. GIỚI HẠN
Câu 1. Cho dãy số ( un ) =
A. L =

5
2

Câu 2. Giá trị của lm

2n2 ( 3n + 1) − n3

B. 5

C. +∞

D. −∞

C. +∞

D. −

C. −4

D.

2n3 + n − n4

(

)

n2 2n2 + 1

A. −1

B. 0

( 3n + 1) n − 4n
Câu 3. Giá trị của lim
n( 2n + n + 1)
2

1
2

1
2

3

2

A. −

và gọi L = lim un . Giá trị của L là:

2n2 + n

bằng:

B. −2

3
2

 9n2 + n + 1 − n 
÷ bằng
Câu 4. Giá trị của lim 

÷
2
n


A.

9
2

B. 1

Câu 5. Giá trị của lim
A. 0

(
(

C.

)

3
2

D. +∞

n2 + 2n + 3 − n + 1 bằng:
B.2

)

C. 1

D.3

3
3
2
Câu 6. Giá trị của lim 2n − 8n + 9n + 2 bằng:

A. −

3
4

B.

3
4

C. −∞

D. −

3
2

Câu 7. Cho ( un ) là dãy số có un > 0 với mọi n. nếu ( un ) có giới hạn hữu hạn là
L..Khẳng định nào trong các khẳng định là đúng:
http://dethithpt.com|

19


CHƯƠNG IV. GIỚI HẠN – TẬP 3

http://dethithpt.com

A. L có thể là 1 số âm
D. L = 0
Câu 8. Giá trị của lim
A. 1

A.0

L≥0

C,

4n+1 − 5n − 2
bằng:
6n − 5n
B.

Câu 9. Giá trị của lim

B. L>0

2
3

C.

16
5

D. 0

C.

1
3

D.

32n+ 2 − 4.2n
9n+1 − 4n
B.1

1
9

4n − 5n
Câu 10. Giá trị của lim n+ 2 n− 4
4 −3
A.

5
16

B. −∞

C. −

5
4

D. −

5
16

Bài 11. Trong bốn giới hạn sau đây, giới hạn nào bằng 0?
A. lim

2n + 1
3n − 2

B. lim

Bài 12. Giá trị của lim
A. 1

C. loim

4n( n − 1) + n3
2n3

D. lim

2n2 + 1
3n

2n + 5sin3 n
3n + 1

B.0

Câu 13. Giá trị của lim
A.0

2n2 + sinn
n3

C.5

D.

2
3

1+ 3+ 32 + ... + 3n
bằng”
1+ 4 + 42 + ... + 4n

B.

3
4
2

C.

4
3

D. +∞

3

2  2  2
Câu 14. Đặt S = 1− +  ÷ −  ÷ + ... Giá trị của S bằng:
3  3  3
A. 3

B.

2
3

C.

3
5

D.

5
3

Câu 15. Số thập phân vô hạn tuần hoàn 1,62222222.... được biểu diễn bởi phân
số nào:
A.

57
33

B.

64
51

C.

73
45

D.

68
57

Câu 16. Cho ( un ) là một cấp số nhân lùi vô hạn có u1 = 2 và tổng tất cả các số
hạng là 3. Thế thì công bội của cấp số nhân này là:
http://dethithpt.com|

20


CHƯƠNG IV. GIỚI HẠN – TẬP 3

http://dethithpt.com

A.

1
2

2
3

B.

D.

1
3

C.0

D.

8
5

C. 1

D. −2

C. −

1
2

2
Câu 17. Giá trị của lim 2x + 3x + 1 − 4 bằng
x→ 2
x+ 3

A.

2 3− 4
5

B. 1
x3 − 3x + 2
bằng:
x→1
x2 − 1

Câu 18. Giá trị của lim
A. 0

1
2

B.

(x

)(

4 − x2

x→ 2

A. 0

)

− 5x + 6 x3 − 1

2

Câu 19. Giá trị của lim

B.

bằng:

7
4

C. −

7
4

D.

1
4

3x3 − 2x + 1
bằng:
x→−∞
4x − x2

Câu 20. Giá trị của lim
A. −3

B.

3
4

C. −∞

D. +∞

2
Câu 21. Giá trị của lim 3x − x + 2 − 4 bằng:
x→ 2
x2 + 2x

A. −

1
8

B. −

Câu 22. Giá trị của lim

3

x→ 3

A.

1
3

B.

x→1

A. −∞

1
6
x2 + 3x − 2

(

x→−∞

D.

C.

1
36

D.

1
12

C. 1

D.

3
5

C. 2

D. −2

13
16

)

4x2 − 3x − 3x bằng:

B. +∞

Câu 25. Giá trị của lim

−13
2

bằng:

B. −1

Câu 24. Giá trị của xlim
→+∞

C.

x+ 5− 2
bằng:
x2 − 3x

5x − x2 − 2

Câu 23. Giá trị của lim
A. 0

13
8

4x2 + 3x − 4x
9x2 + 6x − x

bằng:
http://dethithpt.com|

21


CHƯƠNG IV. GIỚI HẠN – TẬP 3

http://dethithpt.com

A. −1

B.

Câu 26. Giá trị của xlim
→+∞

(

3
2

)

4x2 − 2x + 3 − 2x + 3 bằng:

B. +∞

A.0

Câu 27. Giá trị của xlim
→−∞

(

C. −

)

1
2

D.

5
2

x2 + 4x + x bằng:
D. −∞

C. +∞

B. −2

A. 2

D. −∞

C. 0

 x2 − 3x
,x ≥ 2

Câu 28. Cho hàm số f ( x) =  x + 2
tìm khảng định đúng
 3x − 1, x < 2

A. lim− f ( x) = −

1
2

f ( x) = 5
B. lim
x→ 2+

C. lim f ( x) = −

1
f ( x) = 5
hoặc lim
x→ 2
2

f ( x) không tồn tại
D. lim
x→ 2

x→ 2

x→ 2

( x − 1) ( x + 3)
2

Câu 29. Giá trị của lim

x→1

bằng”

B. −2

A. 2

Câu 30. Giá trị của lim+
x→ 2

A.

x − 3x + 2
2

7
5

C.

2
3

D. −∞

2x2 − x − 6
bằng:
( 2− x) ( x + 3)

B. −

7
5

D. −∞

C. +∞

Câu 31. Hàm sô nào trong các hàm số sau liên tục tại điểm x = 1 ?
A. f ( x) =

x+ 3
x2 − 1

 x + 1, x ≥ 1
B. g( x) = 
2x − 3, x < 1

 x + 1, x ≥ 1
C. h( x) = 
D.
 3x − 1, x < 1

k( x) = 1− 2x
Câu 32. Khẳng định nào trong các khẳng định sau là đúng:
A. Nếu hàm số f không xác định tại x0 thì f gián đoạn tại x0
f ( x) không tồn tại thì hàm số f gián đoạn tại x
B. Nếu lim
0
x→ x0
f ( x) tồn tại và lim f ( x) ≠ f ( x0 ) thì hàm số f gián đoạn tại x
C. Nếu lim
0
x→ x0
x→ x0
D. Cả ba khẳng định đều đúng
http://dethithpt.com|

22


http://dethithpt.com

CHƯƠNG IV. GIỚI HẠN – TẬP 3

 − x2 − x + 2
, x ≠ −2

Câu 33. Cho hàm số f ( x) =  x2 − 4
Hàm số liên tục tại x = −2 khi.
 a, x = −2

A. a=

3
4

B. a= −

3
4

C. a=

1
4

D. a =

−1
4

 3x + 1, x ≤ 0
Câu 34. Hàm số f ( x) = 
. Tập hợp các giá trị của tham số a, để hàm
 ax + 1, x > 0
số liên tục trên ¡ là:
A. ∅

B. ¡

C. { 1}

D. { 3}

 x+ 4 − 6

,x ≠ 2
Câu 35. Cho hàm số f ( x) = 
> tập hợp các giá trị a để hàm số
x− 2
 a, x = 2

liên tục tại x = 2 là:
A. { 1}

 1 
B. 

 2 6

 1
C.  
 6

 1 
D.  −

 2 6

 x3 − 8
,x > 2
 2
 x − 4
Câu 36. Cho hàm số f ( x) = a, x = 2
. Tập hợp các giá trị của a để hàm

πx
 tan , x < 2
4

số liên tục tại x = 2 là:
A. { 3}

B. { 1}

D. { 2}

C. ∅

Câu 37. Tìm khẳng định đúng trong các khẳng định sau?
I. Nếu hàm số f liên tục trên  a; b và f ( x) f ( b) < 0 thì phương trình f ( x) = 0 có
nghiệm thuộc ( a; b)
II. Nếu hàm số f liên tục trên  a; b và f ( x) f ( b) > 0 thì phương trình f ( x) = 0
không có nghiệm thuộc ( a; b)
A. I
sai

B.II

C. I và II

D. I và II đều

 x + 3 + 1, x ≤ 1

Câu 38. Hàm số f ( x) =  x3 − 1
,x > 1
 2
x − x
A. Liên tục trên ¡
http://dethithpt.com|

23


http://dethithpt.com

CHƯƠNG IV. GIỚI HẠN – TẬP 3

B. liên tục tại mọi đuểm trừ điểm x = 1
C. Liên tục tại mọi điểm x∈ −
 3; +∞ ) trừ x = 1
D. Liên tục tại mọi điểm x∈ −
 3; +∞ )
 x4 + x
, x ≠ 0, x ≠ −1
 2
x
+
x

Câu 39. Cho hàm số f ( x) =  3, x = −1
1, x = 0


Tìm khẳng định đúng trong các khẳng định sau:
A. hàm số f liên tục tại mọi điểm x∈ ¡
B. Hàm số f liên tục tại mọi điểm trừ các điểm thuộc −
 1;0
C. hàm số f liên tục tại mọi điểm trừ điểm x = −1
D. Hàm số f liên tục tại mọi điểm trừ điểm x = 0
− xcosx,x < 0
 2
 x
f
x
=
,0 ≤ x < 1
Câu 40. Hàm số ( ) 
x
+
1

 x3 , x ≥ 1
A. Liên tục trên ¡
B. Liên tục tại mọi điểm trừ điểm x = 0
C. Liên tục tại mọi điểm trừ điểm x = 1
D. Liên tục tại mọi điểm trừ hai điểm x = 0 và x = 1
ĐÁP ÁN
1C

2D

3A

4B

5B

6A

7C

8D

9B

10B

11B

12D

13A

14C

15C

16D

17A

18A

19B

20D

21D

22C

23D

24A

25B

26D

27B

28D

29A

30D

31C

32D

33B

34B

35B

36C

37A

38D

39A

40C

http://dethithpt.com|

24



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay

×
x