Tải bản đầy đủ

Đề thi thử 2018 thầy Lê Bá Trần Phương có giải chi tiết Đề 4

ĐỀ SỐ 4
I. MA TRẬN ĐỀ THI
Cấp độ câu hỏi
ST
T

Chuyên đề

Đơn vị kiến thức

Nhận
biết

Thông
hiểu

Vận
dụng

Vận
dụng

cao

Tổng

1

Đồ thị hàm số

C1

1

2

Bảng biến thiên

C2

1

3

Tương giao

C8

1

4

Cực trị

C5

1

5

Đơn điệu


C6

1

6

Tiệm cận

C9

1

7

Min – max

C7

1

8

Tiếp tuyến

C10

1

9

Biểu thức mũ – loga

C15

2

C13

1

Hàm số

10

Mũ – Logarit

C3

Bất phương trình mũ – loga

C12, C14,

11

Hàm số mũ – logarit

12

Phương trình mũ – logarit

C11

1

13

Nguyên hàm

C19

1

14

Nguyên hàm –

Tích phân

C4

C18, C20

Tích phân
15

Ứng dụng tích phân

16

Dạng hình học

17

Dạng đại số

Số phức

4

C16, C17

C39
C40,
C41

C25, C26
C21, C22,
C23

4
2
2
3


Phương trình trên tập số

18

phức

C24

1
1

19

Hệ trục tọa độ

C32

20

Mặt phẳng

C35

21

Vị trí tương đối

C34

22

Bài toán tìm điểm

C33

23

Thể tích khối chóp

C27, C28

24

Thể tích lăng trụ

C46

2

Hình Oxyz
1
C45

2
2

C42

1

HHKG
25

Khoảng cách

26

Góc

27

C29

1
C43

Mặt nón, khối nón

C31

Mặt cầu, khối cầu

C30

1
1

Khối tròn xoay
28

C44

29

Lượng giác

Phương trình lượng giác

30

Tổ hợp – Xác

Xác suất

C36

31

suất

Nhị thức Newton

C38

32

CSC – CSN

33

Giới hạn

C47

Xác định thành phần CSC –

Giới hạn dãy số

C48

31

11

2
1

C50
4

1
1

C37

CSN

Tổng số câu theo mức độ

2

4

Tải file word đủ bộ tại đây : https://goo.gl/FVUrqv

1
50


II. ĐỀ THI
PHẦN NHẬN BIẾT
Câu 1: Đường cong ở hình bên là đồ thị
của hàm số nào dưới đây?
A. y 

2x  1
x 1

B. y 

2x  1
x 1

C. y 

2x + 1
x 1

D. y 

2x  3
x 1

Câu 2: Bảng biến thiên dưới đây là của hàm số nào?



x

–1

y

+

0

0


0

+

4
y



1


0
4



3

A. y   x 4  2x 2  3

B. y   x 4  2x 2  3



C. y   x 4  3x 2  3

D. y   x 4  3x 2  3

Câu 3: Cho 0  a  1, b  0, c  0. Hỏi khẳng định nào dưới đây là sai?
A. log a (bc)  log a b  log a c

b
B. log a    log a b  log a c
c

C. a logb c  c logb a .

D. a log a b  a.

Câu 4: Viết công thức tính tích phân từng phần
b

b

a

a

b

b

a

a

A.  udv  uv ba   vdu.

b

b

a

a

b

b

a

a

B.  udv  u ba  v ba   vdu

C.  udv  uv ba   vdu

D.  udv  u ba  v ba   vdu
PHẦN THÔNG HIỂU

Câu 5: Tìm tọa độ điểm cực đại của đồ thị hàm số y  x3  3x 2
A. 1;3

B.  0;0 

C.  0; 2 

D. 1; 2 

Câu 6: Hỏi hàm số y  x 4  2x 2  3 nghịch biến trên khoảng nào?
A. 1;   .

B.  1; 0  và 1;   . C.  ; 1 và  0;1

D.  ;   .


Câu 7: Tìm giá trị nhỏ nhất của hàm số y  x 2 
B. min y  3.

A. min y  3.

2
1 
trên đoạn  ; 2 
x
2 

Câu 9: Cho hàm số y 

1

B. M  0;   .
2


1 
 2 ;2



1 
 2 ;2



Câu 8: Tìm tọa độ giao điểm M của đồ thị hàm số y 
 1
A. M  0;  .
 2

D. min y  4.

C. min y  4.

1 
 2 ;2



1 
 2 ;2 



x 1
với trục tung.
x2
1

D. M  0;   .
3


 1
C. M  0;  .
 3

x 3
. Hỏi khẳng định nào dưới đây là đúng?
x2  4

A. Đồ thị hàm số có hai tiệm cận đứng x  2, x  2 và một tiệm cận ngang y  0
B. Đồ thị hàm số có hai tiệm cận đứng x  2, x  2 và một tiệm cận ngang y  1
C. Đồ thị hàm số có hai tiệm cận đứng x  2, x  2 và một tiệm cận ngang y 

3
4

D. Đồ thị hàm số có hai tiệm cận đứng x  2, x  2 và một tiệm cận ngang y  1
Câu 10: Viết phương trình tiếp tuyến của đồ thị hàm số y 
A. y  3x  5

B. y  3x + 13

x 1
tại điểm có hoành độ x  3
x2

C. y  3x + 13

D. y  3x + 5

Câu 11: Giải phương trình log3 ( x  1)  log3 (3  x).
A. x  2

B. x  3

C. x  1

D. x  4

C. y '(1)  e  1

D. y '(1)  e  3

C. 0  x  1

D. log3 2  x  1

Câu 12: Cho hàm số y  e x  ln x. Tính y' (1)
A. y '(1)  e  1

B. y '(1)  e  3

Câu 13: Giải bất phương trình log 2 (3x  2)  0
A. x  1

B. x  1

Câu 14: Tìm tập xác định D của hàm số y  log5 ( x2  3x  4)
A. D   ; 1   4;   .

B. D   1; 4

C. D   ; 1   4;   .

D. D   1; 4 

Câu 15: Tính giá trị của biểu thức P  log a b 2  log a2 b 4  2log a
A. P = 3
Câu 16: Cho hàm số y 

B. P = 4

1
 0  a  1, b  0  .
b2

C. P = 10

D. P = 0.

ln x
. Hỏi khẳng định nào dưới đây là đúng?
x

A. Hàm số có một cực tiểu.

B. Hàm số có một cực đại.


D. Hàm số có một cực đại và một cực tiểu.

C. Hàm số không có cực trị.

Câu 17: Hỏi hàm số y  ln  x 2  x  2  nghịch biến trên khoảng nào?
1

A.  ;  
2


1

B.  ;  
2


 2x  x 



2

Câu 18: Biết

x 2  1 dx 

1

A. S = 8

 1

C.   ;  
 2


a 2 b
3

1

D.  ; 
2


 a, b   . Tính S = a + b.

B. S = 0

C. S = 2

D. S = 4

Câu 19: Tìm nguyên hàm của hàm số f ( x)  (sin x  cos x)2
1

A.

 f ( x)dx  x  2 cos 2 x  C.

C.

 f ( x)dx   2 cos 2 x  C.

1

1

B.

 f ( x)dx  2 cos 2 x  C.

D.

 f ( x)dx  x  2 cos 2 x  C.

1

1

Câu 20: Cho hàm f ( x ) liên tục trên

và thỏa mãn

 x. f (x)dx  5 .
0



1
Tính I  
4

4

 f  cos 2 x  d  cos 4 x .
0

A. I = 5

B. I = –5

C. I = 4

Câu 21: Tìm phần thực và ảo của số phức z   2  3i 

D. I = –4

2

A. Phần thực bằng 5 và Phần ảo bằng 12

B. Phần thực bằng 5 và Phần ảo bằng 12.

C. Phần thực bằng 5 và Phần ảo bằng 12

D. Phần thực bằng 5 và Phần ảo bằng  12

Câu 22: Tìm các số thực x, y biết 3 x  2   y  5  i  x  1   2 y  1 i
3
4
A. x   , y   .
2
3

2
3
B. x  , y  .
3
4

2
3
C. x   , y   .
3
4

3
4
D. x  , y  .
2
3

C. z  644.

D. z  466.

Câu 23: Tính mô đun của số phức z  (2  5i)4i
A. z  464.

B. z  446.

Câu 24: Tìm số phức z thỏa mãn 3 z 2  2 z  1  0.
A. z 

1  5i
.
3

B. z 

1  7i
.
3

C. z 

1  2i
.
3

Câu 25: Trên mặt phẳng (Oxy), tìm tập hợp các điểm biểu diễn số phức z
có phần thực bằng 3.
A. Đường thẳng y  3.

B. Đường thẳng x  3.

C. Đường thẳng y  3.

D. Đường thẳng x  3.

D. z 

1  3i
.
3


Câu 26: Cho hai số phức z 

5  2i
. Hỏi điểm biểu diễn của z là điểm nào
i

trong các điểm M, N, P, Q ở hình bên
A. Điểm P.

B. Điểm Q.

C. Điểm M.

D. Điểm N.

Câu 27: Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a, tam giác SAD đều và nằm
trong mặt phẳng vuông góc với mặt phẳng đáy. Tính thể tích V của khối chóp SABCD.
A. V 

a3. 3
.
4

B. V 

a3. 3
.
6

C. V 

5a 3 . 3
.
6

D. V 

7a3 . 3
.
6

Câu 28: Cho hình chóp SABC có đáy là tam giác đều cạnh a, SA vuông góc với mặt phẳng đáy,
góc giữa hai mặt phẳng (SBC) và (ABC) bằng 60 0 . Tính thể tích V của khối chóp SABC.
A. V 

a3. 3
.
8

B. V 

a3
.
12

C. V 

a3. 3
.
4

D. V 

a3. 3
.
12

Câu 29: Cho hình chóp S.ABCD có đáy là hình bình hành. Biết rằng, thể tích của khối chóp
S.ABCD bằng 2a 3 và diện tích tam giác SAB bằng a 2 . Tính khoảng cách h giữa hai đường thẳng
SA và CD.
A. h 

3a
.
5

B. h  3a.

C. h 

5a
.
3

D. h  2a.

Tải file word đủ bộ tại đây : https://goo.gl/FVUrqv
Câu 32: Cho hai véc tơ a 1;0; 3 , b  1; 2;0  . Tính tích có hướng của hai véc tơ a và b
A. a, b    6;3; 2  .

B. a, b    6; 3; 2  .

C. a, b    6; 2; 2  .

D. a, b    6; 2; 2  .

Câu 33: Tìm tọa độ hình chiếu vuông góc H của điểm M 1; 2; 4  trên trục Oz.
A. H(0;2;0).

B. H(1;0;0).

C. H(0;0;–4).

D. H(1;2;–4).

Câu 34: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng  P  : x  y  6 z  m  0 và cho
đường thẳng d có phương trình
A. m = –20.

x 1 y 1 z  3


. Tìm m để d nằm trong (P).
2
4
1

B. m = 20.

C. m = 0.

D. m = –10.

Câu 35: Viết phương trình mặt phẳng chứa trục Ox và chứa điểm M  4; 1; 2  .
A. 2y + z = 0.

B. 4x + 3y = 0

C. 3x + z = 0

D. 2y – z = 0

PHẦN VẬN DỤNG
Câu 36: Công ty X thiết kế bảng điều khiển điện tử để mở cửa một ngôi nhà. Bảng gồm 5 nút,
mỗi nút được ghi một số từ 1 đến 5 và không có hai nút nào được ghi cùng một số. Để mở được


cửa cần nhấn liên tiếp ít nhất 3 nút khác nhau sao cho tổng của các số trên các nút đó bằng 10.
Một người không biết quy tắc mở cửa trên, đã nhấn ngẫu nhiên liên tiếp ít nhất 3 nút khác nhau
trên bảng điều khiển. Tính xác suất P để người đó mở được cửa ngôi nhà.
A. P  0,17.

B. P = 0,7.

C. P = 0,12.

D. P = 0,21.

Câu 37: Cho một cấp số cộng, biết rằng tổng của sáu số hạng đầu bẳng 18 và tổng của mười số
hạng đầu bằng 110. Tìm số hạng tổng quát un .
A. un  11  4n

B. un  11  4n

C. un  11  4n

D. un  11  4n

Câu 38: Tìm n thỏa mãn C21n  C23n  C25n  C27n  ...  C22nn1  223.
A. n = 10

B. n = 12

C. n = 7

D. n = 15
e

Câu 39: Biết F ( x ) là nguyên hàm của f( x ) trên

thỏa mãn

 F (x)d (ln x)  3 và F (e)  5
1

e

Tính I   ln x. f ( x)dx.
1

B. I = –3

A. I = 3

D. I = –2

C. I = 2

Câu 40: Tính diện tích S hình phẳng giới hạn bởi các đường y  x 2  1, x  1, x  2 và trục
hoành.
B. S 

A. S = 6

13
.
6

C. S = 13.

D. S = 16.

Câu 41: Tính thể tích V của khối tròn xoay thu được khi quay xung quanh trục Ox hình phẳng
giới hạn bởi các đường y  tan x, x  0, x 



A. V    3   .
3


B. V  3 


3


3

.

và trục hoành.
C. V  3 


3

.

D. V   3 


3

.

Câu 42: Cho lăng trụ ABCA'B'C' có đáy ABC là tam giác đều cạnh 2a. Hình chiếu vuông góc của
A' trên (ABC) là trung điểm H của BC, góc giữa AA' và (ABC) bằng 450 . Tính thể tích V của
khối lăng trụ ABCA'B'C'.
A. V 

a3. 3
.
3

B. V 

a3. 6
.
4

C. V 

a3. 3
.
12

D. V  3a 3

Câu 43: Cho lăng trụ đứng ABCA'B'C' có đáy ABC là tam giác cân, AB = AC = a, BAC = 1200 ,
BB' = a, I là trung điểm CC'. Gọi  là góc giữa hai mặt phẳng (ABC) và (AB'I). Tính cos  .
A. cos =

3
.
10

B. cos =

3
.
10

C. cos  

3
.
10

D. cos  

2
.
5


Câu 44: Cho hình cầu đường kính AA' = 2a. Gọi H là một điểm nằm trên đoạn AA' sao cho
AH 

4a
. Mặt phẳng (P) đi qua H và vuông góc với AA' cắt hình cầu theo đường tròn (C). Tính
3

diện tích S của hình tròn (C).
8 a 2
.
A. S 
9

11 a 2
.
C. S 
9

5 a 2
.
B. S 
9

D. S 

 a2
9

.

Câu 45: Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;3) và cho đường thẳng d có
phương trình

x 2 y  2 z 3


. Tìm tọa độ của điểm B thuộc trục hoành sao cho AB vuông
2
1
1

góc với d.
 3

A. B    ;0;0  .
 2


3

C. B   ;0;0  .
2


B. B  1;0;0  .

D. B   1; 0; 0  .

Câu 46: Cho hình lập phương ABCDA'B'C'D'có cạnh bằng a. Gọi M là điểm thuộc cạnh AB sao
cho AM 

1
AB. Tính khoảng cách h từ điểm C tới mặt phẳng (B'DM).
3

a
14

A. h 

B. h 

2a
14

3a
14

C. h 

D. h 

a
12

PHẦN VẬN DỤNG CAO
Câu 47: Tìm nghiệm của phương trình sin 3 x  sin 2 x  1  cos3 x
A. x 
C. x 


4


3

 k , x 
 k , x 


2


6

 k 2

B. x 

 k 2

D. x 


4


3

 k , x 
 k , x 



 k 2 , x    k 2

2


6

 k 2 , x 


4

 k 2

3n

2

Câu 48: Gọi a là hệ số của x trong khai triển  3 x 2   , x  0, biết rằng.
x

5
3

2n  4  Cnn  2  Cn1 2  n   Cnn12

A. a = 96069

B. a = 96906

C. a = 96960

D. a = 96096



Câu 49: Tính L  lim  2n. 2  2  2  ...  2 

n  


n can

A. L  

B. L  0

C. L  

Câu 50: Tính đạo hàm cấp n của hàm số y 
A. y ( n )  (1) n .n ! 3  x  1


 n 1

 4  x  3

D. L  1

5 x 2  3 x  20
x2  2x  3

 n 1




B. y ( n )  n ! 3  x  1


 n 1

 4  x  3

 n 1





C. y ( n )   1 .n ! 3  x  1

n

 n 1

 4  x  3

 n 1

 D. y ( n )  n ! 3  x  1 n 1  4  x  3 n 1 




PHẦN III. BẢNG ĐÁP ÁN
1

2

3

4

5

6

7

8

9

10

A

A

D

C

B

C

A

B

A

C

11

12

13

14

15

16

17

18

19

20

C

A

D

A

D

B

A

B

D

A

21

22

23

24

25

26

27

28

29

30

A

D

A

C

B

A

B

A

B

D

31

32

33

34

35

36

37

38

39

40

C

A

C

A

A

C

A

B

C

A

41

42

43

44

45

46

47

48

49

50

D

D

A

A

C

C

B

D

A

A

LỜI GIẢI CHI TIẾT
Câu 1: Đáp án A
Đồ thị hàm số có TCĐ x  1 và TCN y  2  Chọn A hoặc D.
Khi x  0 thì y  1  Chọn A.
Câu 2: Đáp án A
Hàm số có 2 cực trị là x  1  Chọn A.
Câu 3: Đáp án D
log b
Ta có a a  b .

Câu 4: Đáp án C
Câu 5: Đáp án B
2
Ta có y  3 x  6 x; y  0  x  0  x  2 .

Lại có y  6 x  6  y  0   6; y  2   6 .
Do đó xCD  0  yCD  0 .
Câu 6: Đáp án C





Ta có y  4 x3  4 x  4 x x 2  1 ; y  0  x  0  x  1 .
Bảng biến thiên


x



-1

0

1

0

0

0

y’
y

Vậy hàm số nghịch biến trên các khoảng  ; 1 và  0;1 .
Câu 7: Đáp án A
Ta có y  2 x 

2
2
; y  0  2 x  2  x 3  1  x  1 .
2
x
x

 1  17
; y 1  3; y  2   5 .
2 4

Lại có y   

Vậy min y  3 .
1 
 2 ;2



Tải file word đủ bộ tại đây : https://goo.gl/FVUrqv
Câu 49: Đáp án A
Ta chứng minh vn  2  2  .. 2  2cos


2n 1

(*) bằng quy nạp.

Dễ thấy (*) đúng với n  1 . Giả sử (*) đúng với n  k , tức là vk  2cos
Xét vk 1  2  vk  2  2cos


2

k 1

 2.2cos 2


2

k 2

 2cos


2k  2

Do đó (*) đúng với mọi n .
Ta có un  2n. 2  2  ... 2  2n1 sin
Vậy lim un 
n 


2


2

n 2

1

 .2n 2.sin n1 .
2
2

.

Câu 50: Đáp án A
Ta có y 

5 x 2  3x  20
7x  5
3
4
 5
 5

.
2
x  2x  3
x 1 x  3
 x  3 x  1

.


2k 1

.




 y  

3



4

 3  x  1  4  x  3
2

2

 x  1  x  3
3
3
3
3
 y  6  x  1  8  x  3  3.2! x  1  4.2! x  3
4
4
4
4
 y  18  x  1  24  x  3  3.3! x  1  4.3! x  3 
2

2

n
 n 1
n 1
n
Bằng quy nạp ta chứng minh được y     1 .n!3  x  1
 4  x  3  .







Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay

×