Tải bản đầy đủ

KT45 HINH 12 CHUONG 3

TRUNG TÂM GDTX HẢI PHÒNG

BÀI KIỂM TRA CHƯƠNG III

Môn:: Hình học 12
Thời gian làm bài: 45 phút;
(25 câu trắc nghiệm)
Họ và tên:..................................................................... Lớp: .............................
�x  t
x  3 y  6 z 1



Câu 1: Cho hai đường thẳng d1 :
và d 2 : �y   t . Đường thẳng đi qua điểm A(0;1;1)
2
2
1

z2


, vuông góc với d1 và d 2 có pt là:
x y 1 z 1
x y 1 z 1
x y 1 z 1
x 1 y z 1







A. 
B.
C.
D.
1
3
4
1 3
4
1
3
4
1 3
4
r
r
r
r
r r r
Câu 2: Cho 2 vectơ a   2;3; 5 , b   0; 3; 4  , c   1; 2;3  . Tọa độ của vectơ n  3a  2b  c là:
r
r
r
r
A. n   5;1; 10 
B. n   7;1; 4 
C. n   5;5; 10 
D. n   5; 5; 10 


Câu 3: Trong không gian Oxyz cho mp(P): 3x - y + z - 1 = 0. Trong các điểm sau đây điểm nào thuộc (P)
A. A(1; - 2; - 4)
B. B(1; - 2;4)
C. D( - 1; - 2; - 4)
D. C(1;2; - 4)
Câu 4: Cho tam giác ABC với A  3; 2; 7  ; B  2; 2; 3  ; C  3;6; 2  . Điểm nào sau đây là trọng tâm
của tam giác ABC
� 4 10

�4 10 �
 ; ;4�
A. G  4; 10;12 
B. G  4;10;  12 
C. G �
D. G � ;  ; 4 �
3 �
�3 3

�3

�x  1  2t

Câu 5: Cho điểm M  2; 3;5  và đường thẳng  d  : �y  3  t  t �� . Đường thẳng    đi qua M và
�z  4  t

song song với  d  có phương trình chính tắc là :
x 2 y 3 z 5


A.
1
3
4
x 2 y3 z5


C.
2
1
1

x2

1
x2

D.
2

B.

y3 z5

3
4
y3 z5

1
1

Câu 6: Cho mặt cầu (S) tâm I bán kính R và có phương trình: x 2  y 2  z 2  x  2y  1  0 . Trong các
mệnh đề sau, mệnh đề nào đúng:
1
1
�1

�1

 ;1; 0 �và R=
A. I �
B. I � ; 1; 0 �và R=
4
2
�2

�2

1
1
�1

�1

 ;1; 0 �và R=
C. I � ; 1;0 �và R=
D. I �
2
2
�2

�2

Câu 7: Phương trình mặt cầu tâm I  3; 2; 4  và tiếp xúc với  P  : 2x  y  2z  4  0 là:
400
400
2
2
2
2
2
2
A.  x  3   y  2    z  4  
B.  x  3   y  2    z  4  
9
9
20
20
2
2
2
2
2
2
C.  x  3   y  2    z  4  
D.  x  3   y  2    z  4  
3
3
Câu 8: Mặt phẳng (P) đi qua A  1; 1; 2  và song song với    : x  2y  3z  4  0 . Khoảng cách giữa (P)
và    bằng:
A. 14

B.

14
14

C.

5
14

D.

14
2
Trang 1/3 - Mã đề thi 132


(5; 4; 2) . Biết M�là hình chiếu vuông góc của M lên mp( ) .
Câu 9: Cho hai điểm M(1; 2; 4) và M�
Khi đó, mp() có phương trình là:
A. 2x  y  3z  20  0 B. 2x  y  3z  20  0 C. 2x  y  3z  20  0 D. 2x  y  3z  20  0
r
r
r r
Câu 10: Cho a   3; 2;1 ; b   2;0;1 . Độ dài của vecto a  b bằng

A. 1

B.

C. 3
D. 2
2
Câu 11: Phương trình đường thẳng AB với A(1; 1; 2) và B( 2; -1; 0) là:
x  2 y 1 z
x y3 z 4



A.
.
B. 
.
1
2
2
1
2
2
x 1 y 1 z  2
x 1 y 1 z  2




C.
.
D.
.
3
2
2
1
2
2
Câu 12: Mặt phẳng (P) đi qua 2 điểm A  2; 1; 4  , B  3; 2;1 và vuông góc với    : 2x  y  3z  5  0 là:
A. 6x  9y  7z  7  0 B. 6x  9y  7z  7  0 C. 6x  9y  7z  7  0 D. 6x  9y  z  1  0

�x  1  t
x y 1 z 1


, d ' : �y  1  2t . Viết phương trình mặt
Câu 13: Cho A(0; 1; 2) và hai đường thẳng d : 
2
1
1

z  2t

phẳng  P  đi qua A đồng thời song song với d và d’.
A. 2x  3y  5z  13  0
B. x  3y  5z  13  0
2x

6y

10z

11

0
C.
D. x  3y  5z  13  0
Câu 14: Cho mặt cầu (S) : x 2  y 2  z 2  2x  4y  6z  2  0 và mặt phẳng () : 4x  3y  12z  10  0 .
Mặt phẳng tiếp xúc với (S) và song song với ( ) có phương trình là:
A. 4x  3y  12z  26  0
B. 4x  3y  12z  78  0 hoặc 4x  3y  12z  26  0
C. 4x  3y  12z  78  0 hoặc 4x  3y  12z  26  0
D. 4x  3y  12z  78  0
Câu 15: Phương trình mặt phẳng trung trực của đoạn AB với A  4; 1; 0  , B  2;3; 4  là:
A. x  6y  4z  25  0 B. x  6y  4z  25  0 C. x  6y  4z  25  0 D. x  2y  2z  3  0
r
r
r r
Câu 16: Cho 2 vectơ a   1; m; 1 , b   2;1;3 . a  b khi:
A. m  2
B. m  1
C. m  2
D. m  1
Câu 17: Trong không gian với hệ trục Oxyz, cho hai điểm A(2;-2;1), B(3;-2;1) Tọa độ điểm C đối xứng
với A qua B là:
A. D(1; 2; 1)
B. C(4; 2;1)
C. D(1; 2; 1)
D. C(1; 2;1)
x  2 y 1 z

 ;
Câu 18: Trong không gian Oxyz mặt phẳng song song với hai đường thẳng 1 :
2
3 4
�x  2  t

 2 : �y  3  2t có một vec tơ pháp tuyến là
�z  1  t

r
r
r
r
A. n  (5;6; 7)
B. n  (5; 6;7)
C. n  (5; 6;7)
D. n  (5; 6; 7)
r
Câu 19: Trong không gian Oxyz mặt phẳng (P) đi qua điểm M( - 1;2;0) và có VTPT n  (4;0; 5) có
phương trình là:
A. 4x - 5y - 4 = 0
B. 4x - 5y + 4 = 0
C. 4x - 5z + 4 = 0
D. 4x - 5z - 4 = 0
Câu 20: Trong không gian Oxyz cho hai điểm A( - 2;0;1), B(4;2;5). phương trình mặt phẳng trung trực
đoạn thẳng AB là:
A. 3x - y + 2z - 10 = 0 B. 3x + y + 2z + 10 = 0 C. 3x + y - 2z - 10 = 0 D. 3x + y + 2z - 10 = 0

Trang 2/3 - Mã đề thi 132


r
Câu 21: Cho đường thẳng d đi qua M(2; 0; -1) và có vectơ chỉ phương a(4; 6; 2) . Phương trình tham số
của đường thẳng d là:
�x  2  2t
�x  2  2t
�x  4  2t
�x  2  4t




A. �y  3t
B. �y  3t
C. �y  6  3t
�y  6t


�z  2  t
D. �
z  1  t
z  1 t
z  1  2t




Câu 22: Trong không gian với hệ tọa độ Oxyz, phương trình đường thẳng (d) đi qua N(5;3;7) và vuông
góc với mặt phẳng (Oxy) là:
�x  5
�x  5
�x  5
�x  5  t



 t �R  B. �y  3  t  t �R 
 t �R  D. �
 t �R 
A. �y  3
C. �y  3
�y  3
�z  7  2t
�z  7
�z  7  t

z7





Câu 23: Phương trình mặt cầu tâm I(-1;-2;3) bán kính R = 2 là:
A. x 2  y 2  z 2  2x  4y  6z  10  0
B. x 2  y 2  z 2  2x  4y  6z  10  0
C.  x  1   y  2    z  3   22
2

2

D.  x  1   y  2    z  3   2 2

2

2

2

2

r
Câu 24: Mặt phẳng (P) đi qua 3 điểm A  1; 4; 2  , B  2; 2;1 ,C  0; 4;3  có một vectơ pháp tuyến n là:
��


A. n   1;1;0 

��


B. n   0;1;1

��


C. n   1; 0;1

��


D. n   1;0;1

x 1 y  3 z


và mp(P) : x  2y  2z  1  0 . Mặt phẳng chứa d và
2
3
2
vuông góc với mp(P) có phương trình
A. 2x  2y  z  8  0
B. 2x  2y  z  8  0
C. 2x  2y  z  8  0
D. 2x  2y  z  8  0

Câu 25: Cho đường thẳng d :

-----------------------------------------------

----------- HẾT ----------

Trang 3/3 - Mã đề thi 132



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay

×