Tải bản đầy đủ

Đề thi học kì 2 môn toán 9 quận bắc từ liêm hà nội năm học 2017 2018 có đáp án

1/4

Nhóm Toán THCS

Toán học là đam mê
ĐỀ KIỂM TRA HỌC KỲ II NĂM HỌC 2017 - 2018

UBND QUẬN BẮC TỪ LIÊM

MÔN: TOÁN – LỚP 9

PHÒNG GIÁO DỤC & ĐÀO TẠO

Thời gian làm bài: 90 phút

Bài I (2,0 điểm): Cho hai biểu thức A 

4 x
1
x
2

và B 
với x  0;x  1


x 1
x 1
x 1 x 1

1) Tính giá trị của biểu thức A khi x = 4
2) Rút gọn biểu thức B
3) Tìm các giá trị của x để A 

3
2

Bài II (2,0 điểm): Giải bài toán bằng cách lập phương trình hoặc hệ phương trình
Một tổ công nhân dự định làm xong 240 sản phẩm trong một thời gian nhất định. Nhưng thực
tế khi thực hiện, nhờ cải tiến kĩ thuật nên mỗi ngày tổ làm tăng thêm 10 sản phẩm so với dự
định. Do đó, tổ đã hoàn thành công việc sớm hơn dự định 2 ngày. Hỏi theo dự định mỗi ngày
tổ làm được bao nhiêu sản phẩm
Bài III (2,0 điểm): Cho phương trình x  mx  m  1  0 (1)
2

a) Chứng tỏ rằng phương trình có hai nghiệm với mọi giá trị của m
b) Tìm m để hai nghiệm x1; x 2 của phương trình (1) thỏa mãn x1  x 2  3 x1x 2  1
Bài IV (3,5 điểm): Cho A là một điểm thuộc đường tròn (O; R). Kẻ tiếp tuyến Ax của đường
tròn (O). Lấy điểm B thuộc tia Ax sao cho AB < 2R. Gọi M là trung điểm của đoạn thẳng AB,
đường thẳng vuông góc với AB tại M cắt đường tròn (O) tại H và K (H nằm giữa M và K)
1) Chứng minh MKA  MAH. Từ đó chứng minh MKA và MAH đồng dạng
2) Kẻ HI  AK tại I. Chứng minh tứ giác AMHI nội tiếp một đường tròn
3) Kéo dài AH cắt BK tại D. Chứng minh AD  KB
4) Lấy C đối xứng với B qua AK. Chứng minh điểm C thuộc đường tròn (O; R)
Bài V (0,5 điểm): Giải phương trình

x  x  7  2 x 2  7x  2x  35
----- Hết -----

Nhóm Toán THCS:
https://www.facebook.com/groups/606419473051109/



2/4

Nhóm Toán THCS

Toán học là đam mê
ĐỀ KIỂM TRA HỌC KỲ II NĂM HỌC 2017 - 2018

UBND QUẬN BẮC TỪ LIÊM

MÔN: TOÁN – LỚP 9

PHÒNG GIÁO DỤC & ĐÀO TẠO

Thời gian làm bài: 90 phút

HƯỚNG DẪN GIẢI VÀ ĐÁP SỐ
Bài 1a) Với x  4 (TMĐK) thay vào biểu thức A ta có: A 

4 4 8

4 1 3

8
Vậy A  khi x  4
3

1
x
2
với x  0; x  1


x 1
x 1 x 1

b) B 

B





x 1



 

x 1





x 1



x 1



x 1







x 1



x 1

 

x 1



x



x 1 x  x  2

B

B

x 1

 

x 1

x  2 x 1



x 1



2



x 1



x 1



x 1

2



x 1



x 1
x 1

Vậy B 

x 1
với x  0; x  1
x 1

c) Để A 

3 4 x
3
thì 
 3  x  1  8 x  3x  8 x  3  0  3 x  1
2 x 1
2



3 x  1  0


 x  3  0

3 x  1


 x  3

Vậy x  9 thì A 

3
2





x 3  0

x  3  x  9 TM 

Bài 2. Gọi số sản phẩm tổ công nhân dự định làm trong một ngày là: x (sản phẩm) x 
Thời gian công nhân dự định phải làm là:



240
(ngày)
x

Thực tế mỗi ngày họ làm được là: x  10 (sản phẩm), thời gian mà tổ đã làm là:

Nhóm Toán THCS:
https://www.facebook.com/groups/606419473051109/

240
(ngày)
x  10


3/4

Nhóm Toán THCS

Toán học là đam mê

Do thực tế tổ công nhân hoàn thành công việc sớm hơn dự định 2 ngày nên ta có phương trình:
240 240

 2  240(x  10)  240x  2x(x  10)  2x 2  20x  2400  0
x
x  10

 x  40 (KTM)
 x 2  10x  1200  0  
 x  30 (TM)

Vậy mỗi ngày tổ dự định làm được 30 sản phầm
Bài 3a)Ta có:   m2  4(m  1)  m2  4m  4  (m  4)2  0 m  R
Vậy phương trình (1) có 2 nghiệm với mọi m.
 m  2 2  0
  0

 m 1
b) Để phương trình có hai nghiệm x1 ; x2 không âm thì 
 x1 x 2  0
 m  1  0

Xét x1  x2  3 x1 x2  1  x1  x2  3 x1 x2  1
 m  3 m  1  1  3 m  1  m  1  9(m  1)  m 2  2m  1
 m  1(TMDK )
 m 2  11m  10  0  (m  1)(m  10)  0  
 m  10(TMDK )

Vậy m  1 hoặc m  10 thì hai nghiệm x1 ; x2 của phương trình (1) thỏa mãn : x1  x2  3 x1 x2  1
Bài 4
a)Xét  O; R  có MKA  MAH (Tính chất góc tạo bởi tiếp
tuyến và dây cung)
Xét MKA và MAH có:

AMKchung 
  MKA
MKA  MAH 

MAH ( g.g )

B

b)Tứ giác AMHI có: AMH  AIH  1800 mà hai góc này
ở vị trí đối nhau nên tứ giác AMHI là tứ giác nội tiếp.

M

c) KMB  KMA (cạnh góc vuông-cạnh góc vuông)

A

D
K
H
I

nên MKA  MKB
Mà MKA  MAH nên MAH  MKB  MKD
Do đó tứ giác MAKD nội tiếp.
Nhóm Toán THCS:
https://www.facebook.com/groups/606419473051109/

C

O


4/4

Nhóm Toán THCS

Toán học là đam mê

 AMK  ADK  90o  AD  BK .
d) Dễ thấy H là trực tâm ABK nên BH  KA . Lại có IH  KA( gt ) nên B,H,I thẳng hàng.
Tứ giác BMHD nội tiếp nên ABK  MHD  1800
Mà ABK  ACK (Do C đối xứng với B qua AK), MHD  AHK (đối đỉnh) nên

ACK  AHK  1800 do đó tứ giác AHCK nội tiếp.
Lại có A, H, K cùng thuộc  O; R  nên C thuộc  O; R  .
Bài 5. Điều kiện: x  0 *





Đặt t  x  x  7 t  7  t 2  2 x  7  2 x 2  7 x  2 x  2 x2  7 x  t 2  7



PT  t 2  t  42  0   t  7  t  6   0  t  6 do t  7



Với t  6  x  x  7  6  2 x  7  2 x 2  7 x  36
29  2 x  0
 2 x 2  7 x  29  2 x  
2
2
4  x  7 x    29  2 x 
29
29


841
x 
x 


x
2
TM *
2
144
4 x 2  28 x  841  116 x  4 x 2
144 x  841

 841 
S 

144 

Nhóm Toán THCS:
https://www.facebook.com/groups/606419473051109/



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay

×