Tải bản đầy đủ

TOAN9 DE2 HK2

ỦY BAN NHÂN DÂN QUẬN 4
Trường THCS CHI LĂNG
ĐỀ TOÁN LỚP 9 (ĐỀ 2)
Bài 1: (2,25 điểm) Giải các phương trình và hệ phương trình sau:
a/

 x  2

2

 4x

Bài 2: (1,5 điểm)


3  x  1  5  y  3  3

2 x  3  y  1  2


c/ x 4  13 x 2  48  0


b/ �

Cho hai hàm số y  x 2 có đồ thị là (P) và y  3 x  2 có đồ thị là (D)

a/ Vẽ đồ thị (P) và (D) trên cùng mặt phẳng toạ độ Oxy.
b/ Cho (D’) : y = ax +b. Xác định a, b biết (D’) // (D) và (D’) tiếp xúc (P)
Bài 3: (2 điểm ) Cho phương trình : x 2  2 x  m 2  2m  0

(1)

a) Chứng tỏ phương trình (1) luôn có 2 nghiệm x1 , x2 với mọi giá trị của m
b) Tính tổng và tích của hai nghiệm theo m
c) Tìm m để phương trình có 2 nghiệm x1, x2 thỏa mãn: 5 x1 x2  x12  x2 2  3
Bài 4: (3,5 điểm)
Từ điểm M nằm ngoài đường tròn (O;R) vẽ tiếp tuyến MA, MB (với A, B là tiếp điểm) và cát tuyến MCD
( với MCD nằm khác phía với MA so với bờ là OM)
a) C/m: MA2 = MC . MD
b) Gọi I là trung điểm của CD. Chứng minh: tứ giác MAOI và tứ giác MBIO nôi tiếp
c) Gọi H là giao điểm của OM và AB. Chứng minh: MH . MO = MC . MD suy ra tứ giác CHOD nội
tiếp
d) Vẽ tiếp tuyến tại C và D cắt nhau tại K. Chứng minh: 3 điểm A, B , K thẳng hàng
Bài 5: (0,75 điểm)
Một người vay 20 triệu đồng ở ngân hàng thời hạn 1 năm phải trả cả vốn lẫn lãi. Song được ngân hàng
tiếp tục cho vay thêm một năm nữa. Hết hai năm phải trả cả vốn lẫn lãi là 24.200.000 đồng. Hỏi lãi suất
ngân hàng là bao nhiêu phần trăm một năm ?

HẾT


HƯỚNG DẪN CHẤM KIỂM TRA HỌC KỲ 2 NĂM HỌC 2017 – 2018 – ĐỀ 2
Bài

Nội dung hướng dẫn chấm

Bài1 (2,25đ)

Bài 1: (2,25 điểm)

a/ 0,75đ



a) x 2  3x  0

Điểm từng phần

0,25điểm

 x= 0 hoặc x = 3

b/ 0,75 đ

0,25 x 2

3 x  5 y  21 �
3 x  5 y  21



2 x  3 y  5 �
2 x  3 y  5

b)
�x  2
�x  2
��
��
�y  3
�y  3

c) Đặt t  x 2

0,25điểm
0,5điểm

 t �0 
0,25điểm

Pt trở thành : t 2  13t  48  0
t1  16

c/ 0,75 đ

t2  3
� x  �4

0,25điểm

0,25điểm
Bài 2 (1,5 đ)

Bài 2: (1,5 điểm)

a/ 1 đ
a) Bảng giá trị

x
-2

-1

0

1

2
0,25điểm

y  x2
4

1

0

1

4


Bảng giá trị

x
0
y  3x  2

-2

1
1

0,25điểm
Vẽ đúng 1 đồ thị
0,25 điểm

b) 0,5đ
0,25điểm
0,25điểm
b)

a=3
b

Bài 3(1,5đ)

9
4

Bài 3: (2 điểm)

a/ 0,75 đ

  b 2  4ac

0,25điểm

a)   m 2  2m  1

0,25điểm

  (m  1) �0, m
2

 Pt luôn có nghiệm m

b/ 1 đ

b)

S 2
P   m 2  2m

5 x1 x2  x12  x2 2  3
7P  S 2  3

0,25điểm

0,25điểm
0,25điểm

0,25điểm

7 m2  14m  4  3

0,25điểm

7 m  14m  7  0
m 1

0,25điểm

2

Bài 4: 3,5đ


A

H

O

C

M

I

D

B

Xét MAC và MDA có:


AMC chung
�  MDA

( cùng chắn cung AC)
MAC
 MAC  MDA (g – g)

a) 1đ



MA MC

MD MA

 MA2  MC.MD

Xét (O) có OI là một phần đường kính

0,25điểm
0,25điểm

0,25điểm

CD là dây
I là trung điểm của CD

0,25điểm

 OI  CD tại I

b) 1đ

Xét tg MAOI có

�  900 ( MA là tiếp tuyến)
MAO
�  900 (cmt)
MIO
�  MIO
�  1800
 MAO
 Tg MAOI nội tiếp ( tổng 2 góc đối = 1800 )

0,25điểm


Xét tg MBIO

0,25điểm

� = 900 ( MA là tiếp tuyến)
Có: MBO
�  900 (cmt)
MIO

0,25điểm

�  MIO
�  900
 MBO

0,25điểm



Tg MAOI nội tiếp ( 2 đỉnh kề cùng nhìn MO dưới 1 góc 900)

Xét AOB có OA = OB =R


AOB cân tại O
Mà OM là phân giác ( tính chất 2 tiếp tuyến cắt nhau)

0,25điểm
0,25điểm
0,25điểm

 OM cũng là đường cao

c) 1đ

 OM  AB tại H
Áp dụng htl vào vuông MAO , đường cao AH
AM2 = MH . MO
Mà : AM2 = MC . MD
 MH . MO = MC . MD


0,25điểm

MH MD

MC MO
Xét MHC và MDO có :

0,25điểm

MH MD

(cmt)
MC MO


chung
OMD
 MHC  MDO (cgc)

�  MDO

 MHC
 Tg CHOD nội tiếp ( góc ngoài bằng góc đối trong)
Chứng minh 5 điểm K, C, D, O , H cùng thuộc một đường tròn

�  KHO
�  900
 KCO

0,25điểm

 KH  MO
Mà MO  AB tại H

d) 0,5đ

3 điểm K, A, B thẳng hàng

0,25


0,5
Bài 5: 0,75 đ

Bài 5: (0,75 điểm) :
Gọi x% là lãi suất ngân hàng cho vay trong một năm

0,25điểm

A là số tiền đã vay
+ Cuối năm thứ nhất:
Vốn : A
Lãi : A.x%
Vốn và lãi : A + Ax% = A ( 1 + x%)
+ Cuối năm thứ hai
Vốn : A ( 1+x%)
Lãi : A(1+x%) .x%
Vốn và lãi: A ( 1+x%) + A(1+x%) .x%
= A ( 1+x%)2
Ta có pt: 20000000. ( 1+x%)2 = 24200000

0,25điểm

( 1+x%)2 = 1,21
1 + x% = 1,1
x% =0,1
x =10
Vậy lãi suất cho vay là 10% trên 1 năm

0,25điểm



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay

×