Tải bản đầy đủ

Lecture gasparatos

Biofuels Sustainability in Africa
  

Alexandros Gasparatos
Alexandros Gasparatos
Associate Professor, IR3S
Associate Professor, IR3S
Vietnam­Japan University, Hanoi
Vietnam­Japan University, Hanoi
6 December 2017
6 December 2017


About myself
2004

BSc Chemistry, University of Patra (Greece)

2005

MSc Environmental Science, Imperial College London


2005

Environmental Consultant, Capita Symonds Ltd.

2006-2008

EPSRC Researcher (SUE-MOT programme), University of Dundee

2008-2009

Canon Foundation Fellow, UNU-IAS

07/2009

PhD in Ecological Economics, University of Dundee
“Sustainability assessment with reductionist tools: Methodological
issues and case studies”.

2009-2011

JSPS-UNU Fellow, UNU-IAS

2011-2013

Marie Curie Fellow and James Martin Fellow, Oxford University

2013-

Associate Professor in Sustainability Science


What are biofuels?
Biofuels are a type of liquid fuel that is derived from biomass
through different chemical processes.
First generation biofuels
-biodiesel and bioethanol from sugar, starch and oil bearing
crops or animal fats that in most cases can also be used as food
and feed
Second generation biofuels


- mainly bioethanol produced from cellulose, hemicellulose
or lignin


Biofuel uses

Transport: biofuel is added or completely substitutes
conventional transport fuel (e.g. E15)
Rural electrification: locally produced biofuel is used to
power small generators
Cooking: biofuel (e.g. ethanol) is used in cooking stoves


First generation bioethanol 
Maize (US, China)
Wheat (Europe)
Sugarcane (Brazil)
Sugar beet (Europe)
Molasses (India)
Cassava (Southeast Asia, China)
Sweet sorghum (China)

Stromberg and Gasparatos, 2012


First generation biodiesel
Rapeseed (Europe)
Sunflower seed (Europe)
Soybeans (US, Brazil,
Argentina)
Oil palm (Indonesia,
Malaysia)
Jatropha (China, India,
sub-Saharan Africa)
Stromberg and Gasparatos, 2012


Second­generation biofuels
Short rotation coppice: poplar (Populus spec.), willow (Salix spec.),
eucalyptus (Eucalyptus spec.)
Perennial grasses: miscanthus  (Miscanthus sinensis), switchgrass
(Panicum vigratum), reed canary grass (Phalaris arundinacea)
Agricultural by-products: straw, stover, shells, husks, cobs, bagasse,
pulp and fruit bunches from different food crops
Forestry by-products: treetops, branches, woodchips, sawdust, bark


The biofuel lifecycle 


Drivers and impacts


Zhou and Thomson, 2009

Gasparatos et al., 2013

Drivers of biofuel production 


Gasparatos et al., 2011; 2012

Impacts



Case studies

Illovo-Dwangwa Malawi
BERL Malawi
RSSC-SWADE Swaziland

Niqel Mozambique


[ Video]
https://vimeo.com/67382494


Biofuel Feedstock  Energy security
Biofuel landscapes provide feedstock
This feedstock can be converted to liquid fuels
that can be used to cover multiple human needs
This fuel can enhance local and national energy
security, particularly in remote areas and
landlocked countries of Sub-Sahara Africa


Mode of production and end­use
Mode of production and end­use

National blending
mandates or
export

Local (own) fuel
use at the village
or farm level

Market/primary end users

Scale of project
Smallholders and outgrowers
1s – 10s ha

Large industrial farms 100s1000s ha

Type I projects

Type II projects

Small-scale biofuel projects
for rural electrification

Large commercial farmers or
mines producing biofuel for
own use

Type III projects

Type IV projects

Outgrowers linked to
commercial plantations or
smallholders linked to biofuel
processing plants

Large-scale commercial
plantations


Large scale
plantations

Original
landscape
Low density
Medium density

Graphic produced by Graham von Maltitz, CSIR

Small scale
plantations

Mode of production and end­use
High density


Landscape transformations

Source: Google Maps

Photo: Alexandros Gasparatos


Energy security

Stromberg and Gasparatos, 2012


E . M e n ic h e t t i a n d M . O t t o

Energy security

E . M e n ic h e t ti a n d

T a b l e 1 . R a n g e o f r e s u lt s f o r 1 s t g e n e r a t io n b i o - e t h a n o l f r o m m a iz e , w h e a t , s u g a r c a n e , a n d s u g a r
b e e t . R e p o r t e d v a lu e s d o n o t i n c lu d e G H G e m is s io n s a s s o c ia t e d w i t h la n d u s e c h a n g e

A u th o r

Year

Sc o p e

F o ssi l E n e r g y
Im p ro vem en t

F a r r e l l e t a l. 5

20 0 6

U SA

3 4 % ; 16 %

G H G Im p ro vem en t
13 % ; - 2 %

6

T ype
m aiz e

7

A u th o r

Y ear

Sc o p e

F o ss i l E n e r g y
Im p ro vem en t

GH G
Im p ro vem en t

T ype

d e C astr o

20 0 7

B r az il/ A frica

Q u irin et al.

20 0 4

vario u s

NA

~2 0 - 4 0 %

r ap ese ed

~6 0 % ( t o > 10 0 % )

~2 0 - 8 5 %

E lsaye d e t al.

20 0 3

vario u s

6 5%

r ap ese ed

53%

r ap ese ed

P u p pan

20 0 1

B elgiu m / G erm an y

E d w ard s et al.

20 0 7

E u r o p e/ B raz il

55%

45%

r ap ese ed

5 6 - 6 1%

4 1- 4 7 %

r ap ese ed

20 0 7

U SA

68%

U n n a sch & P o n t

20 0 7

U SA

3 3- 6 4 %

W an g et al.

20 0 7

U SA

36 % ( 3 0 - 7 0 % ) 11

19 % ( - 3% , +5 2 % ) 12

m aiz e

D e O liveira et al.

20 0 5

U SA

26 %

-4%

m aiz e

L ec h o n e t al.

20 0 6

/ Sp ain

79 %

56 %

r ap ese ed

Sh ap o u r i et al.

20 0 2

U SA

39 %

35 %

m aiz e

E c o b ilan

200 2

F ran ce

80%

~8 0 %

r ap ese ed

Z ah et al.

20 0 7

U S ,C h i n a ( u t i l )

18 %

m aiz e

C h o u d h u r y et al.

200 2

E u ro pe

4 3%

~5 5 % ( 30 - 8 5% )

r ap ese ed

w h eat

Z ah et al.

20 0 7

vario u s

w h eat

V ar io u s ( E c o fys,
Sen terN o vem )

20 0 5

vario u s

Q u irin et al.

20 0 4

V ario u s

E lsayed et al.

20 0 3

V ario u

s ix

E d w ard s et al.

20 0 7

S& T C o n su ltan ts

8

- 5 % , +3 0 %

13

16 - 8 5 %

m aiz e

T a b le 2 . R a n g e o f r e s u lt s f o r r a p e s e e d , s o y b e a n , s u n f lo w e r , p a lm o il b a s e d o n a s e le c t e d
n u m b e r o f s t u d ie s ( w / o la n d u s e c h a n g e )

G ro o d & H eyw o o d

37 %

2 0 % ( - 4 7 % , +5 8 % ) 9

M . O tto

m aiz e

10

18 - 9 0 %

4 6 -54 %

64%

r ap ese ed

57%

40%

r ap ese ed

20

6 1%

64%

E u rop e +

4 2 % ( 2 2 - 115 % ) 14

32%

D e C astr o

20 0 7

B r az il/ A frica

NA

53-78 %

so yb e an

20 0 6

C an ad a

6 1%

48%

w h eat

L ar so n

20 0 5

E u ro p e/ N . A m er.

-70%

4 5- 75%

so yb e an

L ech o n et al

20 0 5

Sp ain

4 2%

78 %

w h eat

Q u irin et al.

20 0 4

vario u s

>10 0 %

6 8 - 110 %

so yb e an

E c o b ilan

20 0 2

F ran ce

57%

60%

w h eat

E d w ard s et al.

20 0 7

E u r o p e/ B raz il

67%

67%

so yb e an

V ar io u s ( E c o fy s &
Sen terN o vu m )

20 0 5

Europe

40%

32 %

w h eat

U n n asch an d P o n t

20 0 7

10 %

10 %

so yb e an

L ech o n

20 0 6

79 %

56 %

so yb e an

D e C a str o

20 0 7

B r az il, A fric a

90%

>10 0 %

can e

Z ah et al.

20 0 7

20 0 6

B raz il

>9 0 %

85 - 90%

can e

27% ( B R ) - ~ 4 0 %
(U SA )

- 17 % ( B R ) - ~ 4 0 %
(U SA )

so yb e an

Sm eets et al.
E d w ard s et al.

20 0 7

E u rop e +

>9 0 - 10 0 % +

~8 7 %

can e

Q u irin et al.

20 0 4

vario u s

7 2 - 13 9 %

3 5 - 110 %

su n fl o w e r

U n n a sch & P o n t

20 0 7

U SA

86%

84%

can e

E d w ard s et al.

20 0 7

E u r o p e/ B raz il

67%

67%

D e O liveira et al.

20 0 5

B r a z i l, U S A

78 %

>7 0 %

can e

su n fl o w e r

M ac ed o et al.

20 0 4

B raz il

9 1%

86%

can e

L ec h o n e t al.

20 0 6

Sp ain

76%

66%

su n fl o w e r

Z ah et al.

20 0 7

B r az il, C h in a

8 5%

can e

E c o b ilan

200 2

F ran ce

8 3%

8 3%

Sm eets et al.

20 0 6

NA

NA

su n fl o w e r

E d w ard s et al.

20 0 7

E u rop e +

4 8 % ( 2 4 - 7 3% )

R ein h a rd t e t a l.

20 0 7

A verage
p ro d u ctio n

7%

3 1%

P alm o il

E c o b ilan

20 0 2

F ran ce

58 %

6 1%

b eet

U n n asch an d P o n t

20 0 7

10 %

8 - 12 %

P alm o il

E lsayed et al.

20 0 3

V ario u s

~5 8 %

5 1%

b eet

L ech in et al.

20 0 6

T h ailan d / S p ain

64%

40%

P alm o il

Z ah et al.

20 0 7

M ala y sia / C h in a

64%

70 %

P alm o il

B eer e t a l.

20 0 7

I n d o n e sia &
M ala y sia

NA

~8 0 % ( - 8 6 8 % w /
r a in fo r e st c o n v e r sio n ;
20 70 % w / p eat fo rest
c o n ver sio n

P alm o il

Z ah et al.
G n an so u n o u & D au r iat

20 0 7
20 0 4

C h in a
Sw itz er lan d

89%

73%
8 5%

16

w h eat

15

~3 5 - 5 5 %

19

17

4 8 % ( 32 - 6 5 % )

6 5%
40%

b eet
18

b eet

b eet
b eet

Otto and Menichetti, 2009


Energy security
Some biofuels have relatively high EROIs (4-9) and fossil energy
improvement (>50-70%). These biofuels can enhance energy
security in the short-to-medium term.
Even the highest biofuel EROIs are much lower than the EROIs
of conventional fossil fuels (about 15). What is the long-term
energy security?
The overreliance on fossil fuel–intensive inputs (e.g., fertilizers
and agrochemicals) for feedstock production throws doubt onto
biofuels’ long-term energy viability as long as current
production practices are followed.


Energy security
Large scale successes
Brazil: in 2009 bioethanol constituted 20.4% of the total energy
consumed in the transport sector and 11.1% of total final
energy consumed in the whole economy
Malawi: blending sugarcane ethanol in transport sector since
early 1980s. Blending is consistently 10-20%
Small-scale moderate successes and future potential
Small-scale rural electrification (e.g. FACT Foundation
Mozambique) and ethanol cooking stoves (e.g. GAIA
Foundation Ethiopia)


Food and woodland products
Depending on their involvement in feedstock production (e.g. smallholders,
outgrowers, plantation workers) households divert land, (but also labour and/or
other agricultural inputs) from food crop production
Partial displacement :
food production moves somewhere else in the landscape
Total displacement:
food production totally stops in the landscape


Large scale
plantations

Original
landscape
Low density
Medium density

Graphic produced by Graham von Maltitz, CSIR

Small scale
plantations

Mode of production and end­use
High density


Land use change

Romeu-Dalmau et al., submitted


Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay

×