Tải bản đầy đủ

STRUCTURAL AND CONSTRUCTION DESIGN OF 102 COMMERCIAL COMPLEX (THIẾT KẾ CƠ CẤU VÀ XÂY DỰNG 102 COMMERCIAL COMPLEX)

NATIONAL UNIVERSITY OF CIVIL ENGINEERING
FACULTY OF CIVIL & INDUSTRIAL ENGINEERING

FINAL YEAR PROJECT
102 COMMERCIAL COMPLEX

CONTENTS
PART I...................................................................................................................................................
ARCHITECTURE.............................................................................................................................7
CHAPTER I: PROJECT INFORMATION..................................................................................8
1.1. GENERAL INFORMATION...............................................................................................8
CHAPTER II: DESIGN SOLUTION.............................................................................................9
1.1. FLOOR FUNCTION............................................................................................................9
1.2. TRAFFIC SOLUTION.........................................................................................................9
1.3. VENTILATION AND LIGHTING SOLUTION..................................................................9
1.4. FIRE PROTECTION SYSTEM...........................................................................................9
1.5. WATER AND POWER SUPPLY SYSTEM.......................................................................10
1.6. SECURITY SYSTEM........................................................................................................10
PART II..................................................................................................................................................
STRUCTURE...................................................................................................................................18
CHAPTER I: STRUCTURAL SOLUTION................................................................................19

1.1. FEATURES OF DESIGNING HIGH-RISE BUILDING..................................................19
1.2. GENERAL SOLUTION.....................................................................................................19
1.2.1. Popular solutions for main force-resisting system.....................................................19
1.2.2. Analytical diagrams for calculation...........................................................................19
1.3. STRUCTURAL SOLUTION FOR BEAMS, SLABS AND FOUNDATION...................20
1.3.1. Solution for beams and slabs......................................................................................20
1.3.2. Structural solution for foundation..............................................................................21
1.4. MATERIALS......................................................................................................................22
CHAPTER II: PRELIMINARY DIMENTIONS OF STRUTURAL ELEMENTS...............23
2.1. SLABS................................................................................................................................23
2.1.1. Flat slab for 8th to 22nd floor.......................................................................................23
2.1.2. Two way slab...............................................................................................................23
2.2. COLUMNS.........................................................................................................................23
2.1.1. Column C1..................................................................................................................24
2.1.2. Column C1A................................................................................................................24
2.3. SHEAR WALL...................................................................................................................24
STUDENT: NGUYEN VIET DUNG
ID:
10081.56

1


NATIONAL UNIVERSITY OF CIVIL ENGINEERING
FACULTY OF CIVIL & INDUSTRIAL ENGINEERING

FINAL YEAR PROJECT
102 COMMERCIAL COMPLEX

2.4. BEAMS...............................................................................................................................26
2.4.1. Beams supporting slabs 1st to 7th floor........................................................................26
2.4.2. Boundary beam 8th to 22nd floor..................................................................................26
CHAPTER III: LOADS..................................................................................................................27
3.1. REFERENCES...................................................................................................................27
3.2. LOADS...............................................................................................................................27
3.2.1. Gravity loads..............................................................................................................27
3.2.2. Wind loads..................................................................................................................29
CHAPTER IV: INTERNAL FORCES ANALYSIS....................................................................42
4.1. REFERENCES...................................................................................................................42
4.2. MODEL OF CALCULATION...........................................................................................42


4.3. LOAD COMBINATION....................................................................................................42
4.4. STRUCTURE RIGIDITY..................................................................................................44
CHAPTER V: COLUMN DESIGN..............................................................................................47
5.1. REFERENCES:..................................................................................................................47
5.2. PRINCIPLES:.....................................................................................................................47
5.3.1. Materials:...................................................................................................................48
5.3.2. Internal forces.............................................................................................................48
5.3.3. Rebar calculation:......................................................................................................48
5.3.4. Column tie:.................................................................................................................49
CHAPTER VI: DESIGN OF BEAM.............................................................................................61
6.1. REFERENCES...................................................................................................................61
6.2. PRINCIPLES......................................................................................................................61
6.2.1. Calculation of reinforcement of beam carrying shagging moment:...........................61
6.2.2. Calculation of reinforcement of beam carrying hogging moment:.............................62
6.2.3. Calculation of stirrups:...............................................................................................63
6.3. CALCULATION OF BEAM B1 (40X60)..........................................................................63
6.3.1. Materials:...................................................................................................................63
6.3.2. Internal forces:............................................................................................................63
6.3.3. Rebar calculation:......................................................................................................63
6.3.4. Calculate in Excel.......................................................................................................66
CHAPTER VII: DESIGN OF FLAT SLAB.................................................................................68
7.1. REFERENCES...................................................................................................................68
7.2. PRINCIPLES......................................................................................................................68
7.2.1. Thickness of slab.........................................................................................................68
STUDENT: NGUYEN VIET DUNG
ID:
10081.56

2


NATIONAL UNIVERSITY OF CIVIL ENGINEERING
FACULTY OF CIVIL & INDUSTRIAL ENGINEERING

FINAL YEAR PROJECT
102 COMMERCIAL COMPLEX

7.2.2. Calculate the reinforcement........................................................................................69
7.3. CALCULATION FOR TYPICAL FLAT SLAB – 10TH FLOOR.......................................70
7.3.1. Check deflection and punching condition...................................................................70
7.3.2. Calculation of slab reinforcement...............................................................................73
7.3.3. Design of strengthening reinforcement.......................................................................86
CHAPTER VIII: FOUNDATION DESIGN................................................................................87
8.1. REFERENCES:..................................................................................................................87
8.2. GEOLOGICAL FEATURES:.............................................................................................87
8.2.1. Geological survey.......................................................................................................87
8.2.2. Stratigraphy:...............................................................................................................87
8.2.3. Ground water level:....................................................................................................87
8.2.4. Allowable settlement:..................................................................................................87
8.3. DESIGN SOLUTIONS OF FOUNDATION:.....................................................................87
8.3.1. Proposal......................................................................................................................87
8.3.2. Foundation solution for 102 Commercial Complex...................................................90
8.3. MATERIAL........................................................................................................................90
8.4. BEARING CAPACITY OF BORED PILE:.......................................................................90
8.4.1. Determine bearing capacity of bored pile by material:..............................................90
8.4.2. Determine bearing capacity of bored pile using Japanese formula:..........................90
8.4.3. Determine bearing capacity of bored pile based on Meyerhof formula:....................91
8.5. BORED PILE QUANTITY AND ARRANGEMENT:......................................................94
8.5.1. Pile quantity................................................................................................................94
8.5.2. Pile arrangement........................................................................................................94
8.6. BORED PILE CALCULATION........................................................................................95
8.6.1. Hypotheses..................................................................................................................95
8.6.2. Load applied on bored pile:........................................................................................96
8.6.3. Calculation of foundation under column C1A (node 2-A)..........................................96
8.6.4. Calculation of combined foundation under 2 columns C1 (axis 2-B-C)..................103
PART III................................................................................................................................................
CONSTRUCTION.........................................................................................................................110
A. GENERAL INFORMATION..............................................................................................111
1. Architectural solution......................................................................................................111
2. Structural solution...........................................................................................................111
B. DESIGN OF UNDERGROUND CONSTRUCTION METHOD......................................112
1. Bottom-up construction method......................................................................................112
2. Top-Down Construction..................................................................................................113
3. Deep basement construction method for 102 Commercial Complex project..................114
STUDENT: NGUYEN VIET DUNG
ID:
10081.56

3


NATIONAL UNIVERSITY OF CIVIL ENGINEERING
FACULTY OF CIVIL & INDUSTRIAL ENGINEERING

FINAL YEAR PROJECT
102 COMMERCIAL COMPLEX

CHAPTER: DESIGN OF DIAPHRAGM WALL CONSTRUCTION..................................115
1.1. DIAPHRAGM WALL PARAMETERS...........................................................................115
1.1.1. Structural parameters...............................................................................................115
1.1.2. Materials for diaphragm wall...................................................................................116
1.1.3. Joint construction methods for diaphragm wall construction..................................117
1.2. CALCULATION OF WORKLOAD AND LABOR........................................................118
1.2.1. Determination of length of excavation step..............................................................118
1.2.2. Guide wall construction workload............................................................................119
1.2.3. Diaphragm wall construction workload...................................................................120
1.3. CONSTRUCTION MACHINE........................................................................................121
1.3.1. Seleting grab cutter...................................................................................................121
1.3.2. Base Carrier Machine..............................................................................................121
1.3.3. Bentonite mixer.........................................................................................................123
1.3.4. Bentonite pumping machine.....................................................................................123
1.3.5. Air compressor..........................................................................................................123
1.3.6. Concrete mixer truck.................................................................................................124
1.3.8. Dumping truck..........................................................................................................124
1.3.9. Excavator..................................................................................................................125
1.4. DESIGN OF CONSTRUCTION METHOD....................................................................127
1.4.1. Primary panel excavation for diaphragm wall construction....................................127
1.4.2. Slurry cleaning and desanding for diaphragm wall construction............................127
1.4.3. Construction order of wall panels............................................................................128
1.5. DIAPHRAGM WALL CONSTRUCTION SCHEDULE ................................................129
1.5.1. Construction time of executing one wall panel.........................................................129
1.5.2. Labor consumption on site/day.................................................................................129
1.6. QUALITY, SAFETY AND ENVIROMENTAL CONTROLS........................................130
CHAPTER II: DESIGN OF BORED PILE CONSTRUCTION............................................131
2.1. PILING CONSTRUCTION METHOD...........................................................................131
2.1.1. About bored pile........................................................................................................131
2.1.2. Bored pile parameters...............................................................................................131
2.2. CALCULATION OF CONSTRUCTION PARAMETERS.............................................132
2.2.1. Excavating soil volume.............................................................................................132
2.2.2. Bentonite volume......................................................................................................133
2.2.3. Concrete volume.......................................................................................................133
2.3. CONSTRUCTION MACHINES......................................................................................133
2.3.1. Pile boring machine..................................................................................................133
2.3.2. Bentonite mixer.........................................................................................................134
STUDENT: NGUYEN VIET DUNG
ID:
10081.56

4


NATIONAL UNIVERSITY OF CIVIL ENGINEERING
FACULTY OF CIVIL & INDUSTRIAL ENGINEERING

FINAL YEAR PROJECT
102 COMMERCIAL COMPLEX

2.3.3. Bentonite pumping machine.....................................................................................134
2.3.4. Air compressor..........................................................................................................135
2.3.5. Concrete mixer truck.................................................................................................135
2.3.6. Dumping truck..........................................................................................................135
2.3.7. Crawler Crane..........................................................................................................136
2.3.8. Excavator..................................................................................................................138
2.4. DESIGN OF CONSTRUCTION METHOD....................................................................140
2.4.1. Machine moving path...............................................................................................140
2.4.2. Bored pile construction sequence.............................................................................140
2.5. CONSTRUCTION TIMING AND MAN POWER.........................................................143
2.5.1. Construction time for one bored pile........................................................................143
2.5.2. Man power................................................................................................................144
2.6. CONSTRUCTION ORGANIZATION.............................................................................144
CHAPTER III: DEEP EXCAVATION WITH ANCHORED DIAPHRAGM WALL.........146
3.1. LATERAL SUPPORT METHODS FOR DEEP EXCAVATION.....................................146
3.2. DESIGN OF ANCHOR GROUND CONSTRUCTION..................................................148
3.2.1. Materials..................................................................................................................148
3.2.2. Calculation of construction parameters...................................................................149
3.2.3. Construction machine...............................................................................................150
3.2.4. Construction procedure............................................................................................150
3.2.5. Organization parameters..........................................................................................151
3.3. DESIGN OF EXCAVATION CONSTRUCTION............................................................151
3.3.1. Excavation method....................................................................................................151
3.3.2. Calculation of workload and labor..........................................................................153
3.3.3. Machine for excavation work...................................................................................153
3.3.4. Excavation organization...........................................................................................156
CHAPTER IV: DESIGN OF FOUNDATION CONSTRUTION...........................................157
4.1. DESIGN OF FORMWORK.............................................................................................157
4.1.1. Structural component stats.......................................................................................157
4.1.2. Material for foundation formwork............................................................................158
4.1.3. Calculation of steel formwork..................................................................................164
4.2. CALCULATION OF WORKLOAD AND LABOR.......................................................167
4.2. DESIGN CONSTRUCTION METHOD.........................................................................169
4.2.1. Foundation construction...........................................................................................169
4.2.2. Ground floor (3rd basement floor) construction........................................................173
4.2.3. Massive volume concrete pouring method................................................................174
4.3. CONSTRUCTION MACHINES......................................................................................175
STUDENT: NGUYEN VIET DUNG
ID:
10081.56

5


NATIONAL UNIVERSITY OF CIVIL ENGINEERING
FACULTY OF CIVIL & INDUSTRIAL ENGINEERING

FINAL YEAR PROJECT
102 COMMERCIAL COMPLEX

4.3.1. Tower crane..............................................................................................................175
4.3.2. Static concrete pump.................................................................................................177
4.3.3. Concrete truck...........................................................................................................178
4.3.4. Vibrator.....................................................................................................................179
4.5. ORGANIZATION PARAMETERS.................................................................................179
CHAPTER V: BASEMENT CONSTRUCTION......................................................................181
5.1. PRELIMINARY METHOD FOR BASEMENT CONSTRUCTION..............................181
5.1.1. Basic parameters......................................................................................................181
5.2. DESIGN OF FORMWORK.............................................................................................183
5.2.1. Column formwork.....................................................................................................183
5.2.2. Core-wall formwork..................................................................................................186
5.2.3. Beam formwork.........................................................................................................190
5.2.4. Slab formwork...........................................................................................................196
5.3. CALCULATION OF WORKLOAD AND LABOR........................................................200
5.4. CONSTRUCTION MACHINES AND EQUIPEMENT..................................................203
5.4.1. Tower crane..............................................................................................................203
5.4.2. Static concrete pump.................................................................................................205
5.4.3. Concrete truck...........................................................................................................206
5.4.4 Vibrator......................................................................................................................207
CHAPTER VI: CONSTRUCTION SCHEDULE.....................................................................208
6.1. OVER VIEW....................................................................................................................208
6.2. CONSTRUCTION SCHEDULE SET-UP PROCEDURE...............................................208
6.3. LIST OF TASKS...............................................................................................................209
6.3.1. Foundation................................................................................................................209
6.3.2. Basement construction..............................................................................................209
6.4. QUANTIFICATION.........................................................................................................210
6.5. LABOR CONSUMPTION...............................................................................................210
CHAPTER VII: SITE LOGISTICS...........................................................................................213
7.1. OVERVIEW.....................................................................................................................213
7.2. CALCULATION..............................................................................................................214
7.2.1. Amount of material for storage.................................................................................214
7.2.2. Temporary facilities..................................................................................................215
7.2.3. Water supply..............................................................................................................216
7.2.4. Power supply............................................................................................................217
7.3. SAFETY AND ENVIRONMENT...................................................................................218
7.3.1. Training, implement, examination of safety..............................................................218
STUDENT: NGUYEN VIET DUNG
ID:
10081.56

6


NATIONAL UNIVERSITY OF CIVIL ENGINEERING
FACULTY OF CIVIL & INDUSTRIAL ENGINEERING

FINAL YEAR PROJECT
102 COMMERCIAL COMPLEX

7.3.2. Occupational safety in each stage of construction...................................................219
7.3.3. Safety in working with equipment, machines on site................................................222
7.3.4. Environmental management.....................................................................................222

PART I

ARCHITECTURE

STUDENT: NGUYEN VIET DUNG
ID:
10081.56

7


CHAPTER I:
PROJECT INFORMATION
1.1. GENERAL INFORMATION
Project name:
102 COMMERCIAL COMPLEX
Investor:
VINACOMIN JSC
Location:
Nguyen Tuan Street, Thanh Xuan, Hanoi
Floor count:
23
Land area
2.020 m2
Constructed area
1624 m2
Floor area:
102 Commercial Complex is a multi-functioned building, which includes a 7-floor
commercial block, a 13-floor residential block and other functional blocks (pen house,
parking area…).
Its architectural style among other complex and commercial centers of Thanh Xuan
district makes a harmonic view. Since the convenience in traffic, the building is one of the
most ideal location for company and business office.

STUDENT: NGUYEN VIET DUNG
ID:
10081.56

8


NATIONAL UNIVERSITY OF CIVIL ENGINEERING
FACULTY OF CIVIL & INDUSTRIAL ENGINEERING

FINAL YEAR PROJECT
102 COMMERCIAL COMPLEX

CHAPTER II
DESIGN SOLUTION
1.1. FLOOR FUNCTION
Floor
Function
3rd, 2nd and 1st basement
Parking area
st
nd
1 to 2 floor
Commercial area
rd
th
3 To 6 floor
Offices
th
7 floor
Technical floor
th
th
8 to 20 floor
Apartment
th
th
21 to 22 floor
Pent house
1.2. TRAFFIC SOLUTION
External traffic solution: private path around the building.
Vertical internal traffic solution: two staircases, three 1350 kG- elevators for
residents and one 1600 kG- elevator for commodity.
Horizontal internal traffic solution: corridor system with a minimum of 2.67m
wide is convenient and comfortable for residents to move inside the building.
1.3. VENTILATION AND LIGHTING SOLUTION
According to artificial lighting standard for civil building (TCXD 16-1986), the
building was designed windows for every essential spaces inside. Hence, all of rooms can
get sufficient natural light and fresh air.
Central air condition system of commercial and office area is arranged on technical
floor (7th floor).
1.4. FIRE PROTECTION SYSTEM
Fire protection system is located at the hallway of each story. Fire hoses have
independent pipe with water supply system and has independent pump Moreover, outside
of the building have 2 fire hydranrts to supply water when inside water supply system
drying up.fire protection system is designed follow fire safety standard for high rise
buildings.
Beside modern smoke and fire alarm, firefighting system is fully equipped at each
floor.
1.5. WATER AND POWER SUPPLY SYSTEM
Water supplying system: Water is taken from the city network. The system includes
underground water tanks to meet the demand of residents inside the building.
STUDENT: NGUYEN VIET DUNG
ID:
10081.56

9


NATIONAL UNIVERSITY OF CIVIL ENGINEERING
FACULTY OF CIVIL & INDUSTRIAL ENGINEERING

FINAL YEAR PROJECT
102 COMMERCIAL COMPLEX

Power for the building is taken from the city network and distributed to floors and
rooms respectively. Moreover, the generator is always ready to supply power
automatically for elevators and hallway lighting when electricity goes off.
Information system such as television, telephone and internet cable are hidden in
the plastered wall.
1.6. SECURITY SYSTEM
102 Commercial Complex is equipped with sophisticated security system with
24/7 camera at each floor.

STUDENT: NGUYEN VIET DUNG
ID:
10081.56

10


NATIONAL UNIVERSITY OF CIVIL ENGINEERING
FACULTY OF CIVIL & INDUSTRIAL ENGINEERING

FINAL YEAR PROJECT
102 COMMERCIAL COMPLEX

102 c ommerc ial c omplex

o ffic e - a pa rtment

1

2

3

4

5

6

elevation view 1 - 6
sc a l e: 1/250

STUDENT: NGUYEN VIET DUNG
ID:
10081.56

11


a

b

c

RED BOUNDAR Y LI NE

C ONSTRUCTIO N BO UNDA RYLINE

FINAL YEAR PROJECT
102 COMMERCIAL COMPLEX

C ONSTRUCTIO N BO UNDA RYLINE

RED BOUNDAR Y LI NE

NATIONAL UNIVERSITY OF CIVIL ENGINEERING
FACULTY OF CIVIL & INDUSTRIAL ENGINEERING

d

eleva tio n v iew a - d
sca le: 1/ 250

STUDENT: NGUYEN VIET DUNG
ID:
10081.56

12


NATIONAL UNIVERSITY OF CIVIL ENGINEERING
FACULTY OF CIVIL & INDUSTRIAL ENGINEERING

FINAL YEAR PROJECT
102 COMMERCIAL COMPLEX

M2

M2

ROOF
+83.600
R

R OOF
R +83. 600
S3

ATTIC
M1

TEC HNIC AL AREA

M1

M1

+79.600

+79. 600

penthouse
+76.300

+76. 300

APARTMENT
S4

STO REY 21
+73.000 S21

STO REY 21
S21 +73. 000

S4
STO REY 20
+69.700 S20

STO REY 20
S20 +69. 700
S4

STO REY 19

STO REY 19

+66.400 S19

S19 +66. 400
S4

STO REY 18
+63.100 S18

STO REY 18
S18 +63. 100
S4

STO REY 17
+59.800 S17

STO REY 17
S17 +59. 800
S4

STO REY 16

STO REY 16

+56.500 S16

S16 +56. 500
S4

STO REY 15

STO REY 15

STO REY 14
+49.900 T14

S15 +53. 200

APARMENT

+53.200 S15

TYPICAL
APARTMENT

S4
STO REY 14
T14 +49. 900
S4

STO REY 13
+46.600 S13

STO REY 13
S13 +46. 600
S4

STO REY 12

STO REY 12

+43.300 S12

S12 +43. 300
S4

STO REY 11

STO REY 11

+40.000 T11

T11 +40. 000
S4

STO REY 10
+36.700 S10

STO REY 10
S10 +36.700
S4

STO REY9
+33.400 S9

STO REY9
S9 +33. 400
S4

STO REY8
+30.100

STO REY8

S8

S8 +30. 100
TECHNI CAL STOREY

TEC HNIC AL AREA

S3

TEC HNIC AL AREA

+27.100

TS +27. 100
O FFIC E

O FFIC E

S2

S2

STO REY7
+23.800 S7

STO REY7
S7 +23. 800
O FFIC E

O FFIC E

S2

S2

STO REY6
+20.500

STO REY6

S6

S6 +20. 500
O FFIC E

O FFIC E

S2

S2

STO REY5

STO REY5

S5

S5 +17. 200
O FFIC E

O FFIC E

S2

RED BOUNDARY LINE

STO REY3
+10.600 S3

+ 7.300
+5.500

+4.000

C O NSTRUC TIO N BOUNDARY LINE

STO REY4
+13.900 S4

S2

S2

O FFIC E

O FFIC E

S2

S2

O FFIC E

O FFIC E

S2

S2

O FFIC E

O FFIC E

S2

S2

STO REY4
S4 +13. 900

RED BOUNDARY LINE

OFFICE

C O NSTRUC TIO N BOUNDARY LINE

+17.200

STO REY3
S3 +10. 600

+ 7.300
S2 +5.500

HS

HS

+4.000

SERVICE
S1
N1

STO REY1
+ 0.000
S1

PA V EMENT

YA RD
+ 0.000
Y

PA V EMENT
G AR AGE

G AR AGE
B1

- 3.750

YA RD
+ 0.000

b1 - 3.750
G AR AGE
B1

G AR AGE

G AR AGE

G AR AGE

G AR AGE
B1

b2

b2

-7. 050

G AR AGE
SEPTIC TA NK

B2
-10. 350

Y

B1

b1

BASEMENT

-7.050

STO REY1
S1 + 0.000

B2

SEPTIC TA NK

b3

b3 -10. 350

1

2

3

4

5

6

sec tio n a - a
sc a l e: 1/200

STUDENT: NGUYEN VIET DUNG
ID:
10081.56

13


NATIONAL UNIVERSITY OF CIVIL ENGINEERING
FACULTY OF CIVIL & INDUSTRIAL ENGINEERING

a

b

FINAL YEAR PROJECT
102 COMMERCIAL COMPLEX

c

d

sec tion c - c

STUDENT: NGUYEN VIET DUNG
ID:
10081.56

14


NATIONAL UNIVERSITY OF CIVIL ENGINEERING
FACULTY OF CIVIL & INDUSTRIAL ENGINEERING

FINAL YEAR PROJECT
102 COMMERCIAL COMPLEX

M2
R OOF
+83.600

R OOF
R

R

TEC HNIC AL AREA

+83.600

ATTIC
M1

M1

+79.600

+79.600

penthouse
+76.300

+76.300

APARTMENT

STO REY 21

STO REY 21

+73.000 S21

S21 +73.000

STO REY 20
+69.700 S20

STO REY 20
S20 +69.700

STO REY 19
+66.400 S19

STO REY 19
S19 +66.400

STO REY 18
+63.100 S18

STO REY 18
S18 +63.100

STO REY 17
+59.800 S17

STO REY 17
S17 +59.800

STO REY 16

STO REY 16

+56.500 S16

S16 +56.500

STO REY 14
+49.900 T14

STO REY 15
S15 +53.200

APARMENT

STO REY 15
+53.200 S15

TYPICAL
APARTMENT
STO REY 14
T14 +49.900

STO REY 13
+46.600 S13

STO REY 13
S13 +46.600

STO REY 12

STO REY 12

+43.300 S12

S12 +43.300

STO REY 11
+40.000 T11

STO REY 11
T11 +40.000

STO REY 10
+36.700 S10

STO REY 10
S10 +36.700

STO REY9
+33.400 S9

STO REY9
S9 +33.400

STO REY8
+30.100

STO REY8

S8

S8 +30.100
TECHNI CAL STOREY
TEC HNIC AL AREA

+27.100

S3

TEC HNIC AL AREA

TS

TS +27.100
O FFICE

O FFIC E
S2

STO REY7
+23.800 S7

STO REY7
S7 +23.800
O FFICE

O FFIC E
S2

STO REY6
+20.500 S6

STO REY6
S6 +20.500
O FFICE

STO REY3
+10.600 S3

+ 7.300
+5.500 S2

+4.000

O FFIC E

O FFICE

O FFIC E

O FFICE

O FFIC E

S2

S2

S2

m¸ i s¶nh

STO REY4
S4 +13.900

RED BOUNDARY LINE

S4

STO REY5
S5 +17.200
O FFICE

C O NSTRUC TIO N BOUNDARYLINE

STO REY4
+13.900

S2

C O NSTRUC TIO N BOUNDARYLINE

OFFICE

RED BOUNDARY LINE

STO REY5
+17.200 S5

O FFIC E

STO REY3
S3 +10.600

+ 7.300
S2 +5.500

HS

HS +4.000

SERVICE
S1

N1

STO REY1
+ 0.000 S1
YA RD
+ 0.000 Y

- 3.750

B1

B1

B1

B1

B2

B2

N1

N2

STO REY1
S1 + 0.000
Y

b1

YA RD
+ 0.000

b1 - 3.750

BASEMENT

-7.050

-10.350

b2

b2 -7.050

b3

b3 -10.350

a

b

c

d

sec tio n c - c
sc a l e: 1/200

STUDENT: NGUYEN VIET DUNG
ID:
10081.56

15


NATIONAL UNIVERSITY OF CIVIL ENGINEERING
FACULTY OF CIVIL & INDUSTRIAL ENGINEERING

STUDENT: NGUYEN VIET DUNG
ID:
10081.56

FINAL YEAR PROJECT
102 COMMERCIAL COMPLEX

16


STUDENT: NGUYEN VIET DUNG
ID:
10081.56

A

B

C

D

1

GIÆT
PH¥ I
2,5 m2

LOGGIA
6,4 m2

1

LOGGIA
(9,4 m 2)

BEDROOM 3
24 m2

4,8 m2

WC 2

OPENING

up

dn

exit

12,3 m2

LOGGIA
(4 m 2)

DINING ROOM
11,2 m2

l2

LOGGIA
(8,4 m 2)

kt. ®iÖn

kt. ttll

LOBBY

2

kt. n í c

l3

1000 kg

WC 2
4,1 m2

LIVING ROOM
27,2 m2

PVC D=100

17,4 m2

LIVING ROOM

pc c c

BEDROOM 3
18,4 m2

WC 3
4,5 m2

STORAGE

l1

1000 kg

WEEP PIPE

DINING ROOM
12,5 m2

12,5 m2

KITC HEN

c h 2a
143 m2

1350 kg

25,6 m2

PVC D=100

LOGGIA
(4 m 2)

BEDROOM 1
17,9 m2

LOBBY
9,3 m2

WC 1
C ORRIDOR
5,5 m2
4,3 m2

c h4
167 m2

STORAGE
3,1 m2

WC 1
4,3 m2

C ORRIDOR
5,5 m2

3

LIVING ROOM

BEDROOM 3
17,4 m2

(8,4 m 2)

LOGGIA

WEEP PIPE

4,8 m2

WC 1

LOBBY

12,6 m2

BEDROOM 2

6,4 m2

KITC HEN
8,2 m2

17,6 m2

BEADROOM1

7,7 m2

BEDROOM 2
18,6 m2

LOGGIA
(2,7 m 2)

KITC HEN

15,6 m2

STORAGE
5,3 m2

c h1
99 m2

C ORRIDOR
3,6 m2

LOGGIA
(2,7 m 2)

PVC D=100

BEDROOM 2

LOGGIA
(2,7 m 2)

K.G. L u th« ng
5,3 m2

LIVING ROOM

DINING ROOM
10,2 m2

13,7 m2

BEDROOM 1

LOGGIA
(2,7 m 2)

WEEP PIPE

PVC D=100

3

WEEP PIPE

2

4

4

exit

pc c c

LOGGIA
(2,7 m 2)

12,6 m2

BEDROOM 2

7 m2

LOBBY

C ORRIDOR
5 m2

c h2b
146 m2

up

dn

4,7 m2

WC 2

25 m2

BEDROOM 3

WC 1
5 m2

8,2 m2

LOGGIA
(2,7 m 2)

BEDROOM 1
17,6 m2

KITC HEN
11,2 m2

5

PVC D=100

WEEP PIPE

STORAGE
3,1 m2

16,7 m2

DINING AREA

WC 1
4,3 m2

t.a

19,6 m2

K.G. L u th« ng
5,1 m2

(9,4 m 2)

LOGGIA

LOGGIA
(2,7 m 2)

BEDROOM 1
13,7 m2

DINING ROOM
10,2 m2

LIVING ROOM
12,5 m2

OPENING

BEDROOM 1
13,2 m2

KITC HEN
11 m2

15,6 m2

DINING ROOM

6

LOGGIA
4,8 m2

GIÆT
PH¥ I
2,5 m2

2,5 m2

LOGGIA

6

SCALE: 1/100

8TH - 20TH FLOOR PLAN

LOGGIA
(2,7 m 2)

15,7 m2

c h1
99 m2

C ORRIDOR
3,6 m2

BEDROOM 2

7,7 m2

BÕP

WC 1
4,6 m2

c h3
165 m2

C ORRIDOR
5,2 m2

LOBBY
10,4 m2

STORAGE
2 m2

(4 m 2)

LIVING ROOM

LOGGIA

(4 m 2)
BEDROOM 2

LOGGIA

PVC D=100

WEEP PIPE

5

A

B

C

D

NATIONAL UNIVERSITY OF CIVIL ENGINEERING
FACULTY OF CIVIL & INDUSTRIAL ENGINEERING
FINAL YEAR PROJECT
102 COMMERCIAL COMPLEX

17


NATIONAL UNIVERSITY OF CIVIL ENGINEERING
FACULTY OF CIVIL & INDUSTRIAL ENGINEERING

FINAL YEAR PROJECT
102 COMMERCIAL COMPLEX

PART II

STRUCTURE
Task:
1. Design of deep foundation – bored pile
2. Design of structural frame 2-2
3. Design of flat slab of 8th to 21st floor
Drawings:
1. Drawing S-01: Foundation design
2. Drawing S-02, S-03: Reinforcement layout of frame 2-2
3. Drawing S-04, S-05: Slab rebar layout

STUDENT: NGUYEN VIET DUNG
ID:
10081.56

18


CHAPTER I
STRUCTURAL SOLUTION
1.1. FEATURES OF DESIGNING HIGH-RISE BUILDING
In designing high-rise building, it is important to sort out a compatible structural
solution since different solutions bring about the differences in the construction and the
cost as well.
 Gravity loads:
Gravity loads transfer to the ground through horizontal or incline members of
structures.
 Lateral loads:
The complexity of lateral load resisting system is proportional in high order to the
height.
 Limit of lateral displacement
Lateral displacement (sway/drift) and floor oscillation due to wind/earthquake loads
should be limited for the safety and comfort of the occupants (acceleration causes
sickness).
 Reduce the self-weight:
Reducing the self-weight loads will result in the reduction of effects of dynamic
loads (wind, seimic load), saving the cost due to cutting down the amount of materials,
and more compatibility with architecture.
1.2. GENERAL SOLUTION
1.2.1. Popular solutions for main force-resisting system
Force-resisting wall system (shear wall):
Rigid Frame
Beams are rigidly connected to columns. Flexural stiffness of columns and beams
resist lateral load. Horizontal movement due to lateral load is relative large. This is a
common system in low- or medium-rise buildings (up to 25~30 storeys).
Core wall
1.2.2. Analytical diagrams for calculation
Bracing diagram
In an integrated system, if the frame is only to resist gravity loads whereas lateral loads
are resisted by shear walls/cores. Thus, the system can be analyzed following bracing diagram.


In this case, the fame may have hinges at its nodes, or its lateral stiffness is not enough for
resisting lateral loads.
Brace-framing diagram
In an integrated system, if the rigid frame has efficient lateral stiffness so that it can
resist lateral loads together with shear walls/cores. Thus, the system can be analysed
following brace-framing diagram. In brace-framing diagram, the frame has rigid nodes,
the lateral connection (which is the floors) can be assumed to have infinite axial stiffness
so that lateral loads can be transferred between the elements.
 Main diagrams for calculation: Brace-framing diagram
1.3. STRUCTURAL SOLUTION FOR BEAMS, SLABS AND FOUNDATION
1.3.1. Solution for beams and slabs
a. Flat slab (Column-supported slabs)
A flat slab is a reinforced concrete slab supported directly by concrete columns
without the use of beams.
Uses of column heads:
-

Increase shear strength of slab

-

Reduce the moment in the slab by reducing the clear or effective span

Uses of drop panels:
-

Increase shear strength of slab

-

Increase negative moment capacity of slab

-

Stiffen the slab and hence reduce deflection

Beamless slabs are advantageous by minimizing the story height. The savings in
height lead to other economies for a given number of floors, since mechanical features
such as elevator shafts and piping are shorter.
Beamless slabs will be at a disadvantage if they are used in structures that must
resist large horizontal loads by frame action rather than by shear walls or other lateral
bracing. The transfer of moments between columns and a slab sets up high local
moments, shears, and twisting moments that may be hard to reinforce for.
b. Beam-supported slabs
In structural term, since the reduction of self-weight compared with flat slab the
vibration amplitude and the affection of lateral loads are reduced. Moreover, internal
forces appearing inside structure are also smaller.  Saving the cost.
It is disadvantageous by limiting the story height and the complication in executing.


c. Waffle slabs
Waffle slabs consist of equally spaced ribs in a two-way system. It is not a common
form of construction due to its low fire rating and formwork costs. For a two-hour fire
rating, a minimum of 125 millimeter rib thickness and 120 millimeter slab thickness is
required.
Cost savings due to the reduced quantity of concrete and reinforcement associated
with waffle slabs are offset by the complication in formwork and placing reinforcement.
Formwork complication can be minimized, however, by using standard, reusable,
modular formwork.
Besides, there are also some disadvantages. Depth of slab between the ribs may
control the fire rating. In terms of construction, it requires special or proprietary
formwork. Greater floor-to-floor height. Large vertical penetrations are more difficult to
handle.
d. Post-tensioning slab
The use of post-tensioned reinforcement to construct floor slabs can result in thinner
concrete sections and/or longer spans between supports. Designers commonly take
advantage of this method to produce buildings and structures with clear open spaces
allowing more architectural freedom. Reducing the thickness of each structural floor in a
building can reduce the total weight of the structure and decrease the ceiling to floor
height of each level. In below grade structures, this can mean less excavation, and in
above grade structures, it can mean a reduced overall building height. In areas with
building height restrictions, saving of height on each level can add up by the time you
reach 10 or 12 levels. The use of post-tensioning commonly is applied to “flat slab” or
“flat plate” construction in multilevel structures. The longer spans cut down on the
number of columns required and give the designer more freedom to layout the building.
e. Solution for 102 Commercial Complex slab
In this project, the type of flat slab without drop panels or head columns is chosen.
1.3.2. Structural solution for foundation
Foundation solution for 102 Commercial Complex
Since the depth of the lowest basement floor slab and the scale of building, deep
foundation is chosen as foundation solution for 102 Commercial Complex.
1.4. MATERIALS
Co Concrete grade
Application
1ncr B30 – M400
Slab


Vietnamese Standard:
Rb=17 (Mpa); Rbt=1.2(Mpa); Eb=29E3 (Mpa)
ACI:
fc’=26.57 (Mpa); Ec = 29600 MPa
Rei Steel grade
1
AI
Rs=Rsc=225 (Mpa); Rsw=175 (Mpa); Es=2E6 (Mpa)
2
AII
Rs=Rsc=280 (Mpa); Rsw=225 (Mpa); Es=2E6 (Mpa)
3
AIII
Rs=Rsc=365(Mpa);
Rsw=290(Mpa);
Es=2E6(Mpa)
fy=390(Mpa)

Beam
Column Core Wall

Application
Steel bar with diameter
d < 10mm
Steel bar with diameter
d < 10mm
Steel bar with diameter
d ≥10mm


CHAPTER II
PRELIMINARY DIMENTIONS OF STRUTURAL ELEMENTS
2.1. SLABS
2.1.1. Flat slab for 8th to 22nd floor
Preliminarily choose the height of slab:
l2
l 1
�55 3 2 .
hb
l1 q.k1

Or choose based on empirical formula: hb = 1/30L2 = 750/30 = 25cm
Taking hb = 25cm
2.1.2. Two way slab
Slab thickness of office floor is selected based on empirical formula (“Khung be
tong cot thep toan khoi”, Le Ba Hue).
D.l
hb 
m and hb >hmin
Where:
D – Load factor, D = 0.8÷1.4
m = 40÷45
l – span length; l = 8000 (mm)
hmin = 6 cm - As for civil structures
1, 2 x8000
hb 
 234  mm 
42
> hmin
 Thickness hb = 250 mm.
2.2. COLUMNS
Cross-section-area of column is preliminarily calculated by empirical formula:
N
nSq
Ak
k
Rb
Rb
Where:
k : Coefficient of bending moment
Rb : Compressive strength of concrete
N : Total axial force applied on column; N = nSq
n : Floor quantity of building (including basement)
S : Load transferring area of column
q : Total load applied on 1m2 slab (preliminarily calculate with q = 1÷ 2 T / m2 )


2.1.1. Column C1
27 �8.0 �7.5 �1.1
A  1.1�
 1.15m 2
1700
 Select dimension of column 2B:
bxd = 1400x800 mm; A = 1.12m2

2.1.2. Column C1A

27 �8.0 �4.0 �1.1
A  1.4 �
 0.78m 2
1700
 Select dimension of column C2:
bxd = 1000x800 mm; A = 0.8 m2

2.3. SHEAR WALL
In accordance to article 3.4.1-TCXDVN 198:1997, thickness of shear wall and
h
3.3
�f 
 0.165m
20 20
core must be satisfied these conditions:
and δ ≥150 mm (hf is
storey height)
Total area of wall and core can be calculated by: Score = 0.015Sslab
Where:
Score: Total cross-section area of core wall per floor
Sslab: Total area of slab per floor
N
nSq
27 �5.2 �7.5 �1.2
Ak
k
 1.4
 1.04m 2
Rb
Rb
1700

 Dimensions of wall: bwxlw = 400x3000 mm (A = 1.2 m2).


fra ming l ayo ut o f 2nd - 7th fl o o r

framing layo ut o f 8th - 22nd flo o r


Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay

×