Tải bản đầy đủ

Đề thi thử THPT 2017 môn Toán trường THPT Kim Sơn A Ninh Bình Lần 1 File word Có lời giải chi tiết

Banfileword.com
BỘ ĐỀ 2017
MÔN TOÁN

ĐỀ THI THỬ THPT QUỐC GIA 2017
THPT KIM SƠN A- NINH BÌNH- LẦN 2
Thời gian làm bài: 90 phút;
(50 câu trắc nghiệm)

2
Câu 1: Giải phương trình log 6 x = 2

{

A. x = ± 12

}

B. x ∈ { ±6}

{


C. x ∈ ± 6

}

Câu 2: Trong các hàm số sau, hàm số nào đồng biến trên ¡ ?
x +1
A. y = x 4 + 4x 2
B. y =
C. y = x 3 + 4x
x+4

D. x ∈ { ±36}
D. y = x 2 + 4x

4

Câu 3: Tìm tập xác định D của hàm số y = ( 3 − x ) 3 .
A. D = ¡ \ { 3}
B. D = ¡
C. D = ( −∞;3]
D. D = ( −∞;3)
Câu 4: Gọi n m, lần lượt là số cạnh và số đỉnh của hình bát diện đều. Tính n − m ?
A. n − m = 6
B. n − m = 4
C. n − m = 2
D. n − m = 3
Câu 5: Đồ thị ở hình vẽ bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở 4 phương án A, B,
C, D dưới đây. Hỏi hàm số đó là hàm số nào ?

2x + 1
x +1
x −1
2x − 1
B. y =
C. y =
D. y =
2x − 1
x −1
x +1


2x + 1
Câu 6: Một tấm tôn hình chữ nhật có kích thước 50cmx100cm, người ta gò tấm tôn đó thành mặt xung
quanh của thùng đựng nước hình trụ có chiều cao 50cm. Tính bán kính R của đáy thùng gò được.
10
50
100
5 2
cm
cm
cm
A. R = cm
B. R =
C. R =
D. R =
π
π
π
π
x −1
Câu 7: Biết rằng đường thẳng y = − x − 3 cắt đồ thị hàm số y =
tại hai điểm phân biệt A,B. Tìm
x+2
tọa độ trung điểm M của đoạn thẳng AB.
A. M ( −3; 4 )
B. M ( 1; −4 )
C. M ( −3;0 )
D. M ( −7; 4 )
A. y =

Câu 8: Tìm giá trị nhỏ nhất của hàm số y = 7 − 4x trên [ −1;1] .
y = 11
A. min
[ −1;1]

y=0
B. min
[ −1;1]

y= 3
C. min
[ −1;1]

y=3
D. min
[ −1;1]

Câu 9: Giải phương trình 2.25x − 5x +1 + 2 = 0 ta được hai nghiệm là x1 và x 2 . Tính x1 + x 2 .
Trang 1


A. x1 + x 2 =

5
2

B. x1 + x 2 =

1
2

C. x1 + x 2 = 0

D. x1 + x 2 = 1

m

Câu 10: Tìm số thực m > 1 thỏa mãn

∫ ( ln x + 1) dx = m .
1

A. m = 2e
B. m = e
C. m = e 2
D. m = e + 1
2
Câu 11: Tính diện tích S hình phẳng giới hạn bởi các đường y = x và y = 2x
23
3
5
4
A. S =
(đvdt).
B. S = (đvdt).
C. S = (đvdt).
D. S = (đvdt).
15
2
3
3
Câu 12: Theo số liệu từ Tổng cục thống kê, dân số Việt Nam vào ngày 31 tháng 12 năm 2015 là 91,7
triệu người. Giả sử tỉ lệ tăng dân số hàng năm của Việt Nam trong giai đoạn 2015 – 2030 ở mức không
đổi là 1,1% một năm. Tính dân số Việt Nam vào ngày 31 tháng 12 năm 2030?
A. 91, 7.e0,165 (triệu người).
B. 91, 7.e1,65 (triệu người).
C. 91, 7.e0,11 (triệu người).

D. 91, 7.e0,011 (triệu người).

Câu 13: Số điểm cực đại của hàm số y = − x 4 + 5x 2 + 2 là:
A. 3
B. 2
C. 1
D. 0
Câu 14: Cho một hình nón có bán kính đáy r và đường sinh l . Viết công thức tính diện tích toàn phần
Stp của hình nón đó.
1
2
2
2
2
A. Stp = 2πrl + πr
B. Stp = πrl + πr
C. Stp = πrl+2πr
D. Stp = πrl + πr
2
Câu 15: Cho hàm số y = f ( x ) có đồ thị (C) và lim f ( x ) = 2, lim f ( x ) = −2 . Mệnh đề nào sau đây
x →+∞

x →+∞

đúng?
A. (C) có đúng một tiệm cận ngang.
B. (C) không có tiệm cận ngang.
C. ( C ) có hai tiệm cận ngang là các đường thẳng x = 2 và x = −2 .
D. ( C ) có hai tiệm cận ngang là các đường thẳng y = 2 và y = −2 .
7
Câu 16: Tính P = ln 21 + 2 ln14 − 3ln theo a = ln 2, b = ln 3 .
2
A. P = 5a + b
B. P = 6a + b
C. P = 6a − b
x
Câu 17: Cho hàm số f ( x ) = 4 − 3 . Tính f ' ( 1) ?

D. P = 11a − 5b

4
B. f ' ( 1) = 4 ln 4
C. f ' ( 1) = 4
D. f ' ( 1) = 1
ln 4
Câu 18: Cho a, b, c là các số thực dương và a ≠ 1, b ≠ 1 . Mệnh đề nào sau đây sai?
1
A. log a b.log b a = 1
B. log a c =
log c a
log b c
C. log a c =
D. log a c = log a b.log b c
log b a
1 3
2
2
Câu 19: Tìm tất cả các giá trị thực của tham số m để hàm số y = x − mx + ( m − m + 1) x + 1 đạt cực
3
đại tại x = 1 ?
A. m = 0
B. m = 1
C. m = 4
D. m = 2
2
Câu 20: Tìm tập nghiệm S của bất phương trình log 3 ( x − 4x + 4 ) < 0
A. f ' ( 1) =

A. S = ( 1;3) \ { 2}

B. S = ( −∞;1) ∪ ( 3; +∞ )
Trang 2


C. S = ( 1;3)
D. S = ( 2;3)
Câu 21: Cho hình chóp S. ABC có đáy là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy và
SA = a 3 . Tính thể tích V của khối chóp S.ABC.
3a 3
A. V =
2

a3
B. V =
2
x
Câu 22: Tìm nguyên hàm I = ∫ ( e − 2x ) dx .

3a 3
C. V =
4

a3
D. V =
4

A. I = 2e x − x 2 + C
B. I = e x + x 2 + C
C. I = e x − x 2 + C
D. I = 2e x + x 2 + C
Câu 23: Tính thể tích V của vật thể tròn xoay sinh ra khi cho hình phẳng giới hạn bởi các đường
1
y = , y = 0, x = 1, x = a ( a > 1) quay xung quanh trục Ox
x
 1
 1
 1
 1
A. V =  1 + ÷π
B. V =  1 − ÷
C. V =  1 + ÷
D. V =  1 − ÷π
 a
 a
 a
 a
Câu 24: Tìm tất cả các giá trị thực của tham số m để hàm số y = mx − sin 3x đồng biến trên ¡ ?
A. m ≥ −3
B. m ∈ [ −1;1]
C. m > 3
D. m ≥ 3
4
Câu 25: Tìm họ nguyên hàm của hàm số f ( x ) = sin x.cos x

sin 5 x
cos3 x
B.
+C
∫ f ( x ) dx = 3 + C
5
sin 3 x
sin 4 x
C. ∫ f ( x ) dx =
D. ∫ f ( x ) dx =
+C
+C
3
4
Câu 26: Tìm tất cả các giá trị thực của tham số m để giá trị lớn nhất của hàm số y = − x 2 + mx − 1 bằng
3?
A. m ∈ { −6;6}
B. m ∈ { −6; 4}
C. m ∈ { 6; −4}
D. m ∈ { −4; 4}
A. ∫ f ( x ) dx =

Câu 27: Cho a,b là các số thực dương. Mệnh đề nào sau đây sai?
A. log 3 a > 1 ⇔ a > 3
B. log 3 a = log 3 b ⇔ a = b
C. log 1 a > log 1 b ⇔ a > b
D. log a > log b ⇔ a > b
3

3

3

5

3

dx
= ln a . Tìm a.
2x − 1
1
A. a = 3
B. a = 9
C. a = 8
D. a = 81
Câu 29: Cho hàm số f(x) xác định, liên tục trên ¡ và có bảng biến thiên:
−∞
+∞
x
0
+1
−1


y’
0
+
0
0
+
+∞
+∞
−3
y
−4
−4
Mệnh đề nào sau đây đúng?
A. Hàm số đạt cực đại tại x = 0 và đạt cực tiểu tại x = ±1 .
B. Hàm số có giá trị lớn nhất bằng −3 và giá trị nhỏ nhất bằng −4 .
C. Hàm số có đúng 1 cực trị.
D. Hàm số có giá trị cực đại bằng 0.
Câu 30: Mệnh đề nào sau đây sai?
A. Hàm số y = 2016x + 12 đồng biến trên ¡ .
B. Hàm số y = 3x 4 + x 2 + 4 nghịch biến trên ( −∞;0 ) .
Câu 28: Biết rằng I = ∫

C. Hàm số y = − x 3 − 3x + 2 nghịch biến trên ¡ .
Trang 3


3x − 5
đồng biến trên từng khoảng xác định.
x−2
Câu 31: Cho hàm số y = f ( x ) liên tục trên [ a; b ] . Xác định công thức tính diện tích S của hình phẳng
D. Hàm số y =

(H) giới hạn bởi đồ thị hàm số y = f ( x ) , trục hoành và các đường x = a, x = b .
b

A. S = ∫ f ( x ) dx
a

b

B. S = π ∫ f ( x ) dx
a

b

2
C. S = ∫ f ( x ) dx
a

b

2
D. S = π∫ f ( x ) dx
a

Câu 32: Tìm tập xác định D của hàm số y = ln ( x − 2 ) + log ( x + 1) .
2

A. D = ( 2; +∞ )

B. D = ( −1; 2 ) ∪ ( 2; +∞ )

C. D = ( −1; +∞ )

D. D = ¡ \ { −1; 2}

1
và trục hoành
e
2
1
2
1
A. S = 2 − (đvdt)
B. S = 1 − (đvdt)
C. S = 2 + (đvdt)
D. S = 1 + (đvdt)
e
e
e
e
0
·
Câu 34: Cho hình lăng trụ đứng ABCA’B’C’ có AB = 1, AC = 2, BAC
= 120 . Gọi D là trung điểm của
·
cạnh BDA
' = 900 . Tính thể tích V của khối lăng trụ ABCA’B’C’.
Câu 33: Tính diện tích S hình phẳng giới hạn bởi các đường y = ln x, x = e, x =

15
B. V = 15
C. V = 3 15
2
Câu 35: Trong các hàm số dưới đây, hàm số nào không có cực trị?
A. y = x 2 + 4x − 3
B. y = − x 3 + 3x 2 + 1 C. y = − x 4 + 2x 2 + 2
Câu 36: Hình nào dưới đây không phải hình đa diện?
A. V =

D. V = 2 15
D. y = x 3 + 3x − 2

A. Hình 3.
B. Hình 1.
C. Hình 2.
D. Hình 4.
Câu 37: Cho hai đường thẳng song song d và d '.Xét các mặt cầu tiếp xúc với cả hai đường thẳng d và d
'.Mệnh đề nào sau đây đúng?
A. Tâm các mặt cầu đó nằm trên một đường thẳng cố định.
B. Tâm các mặt cầu đó nằm trên một măt cầu cố định.
C. Tâm các mặt cầu đó nằm trên một mặt phẳng cố định.
D. Tâm các mặt cầu đó nằm trên một mặt trụ cố định.
Câu 38: Cho khối tứ diện ABCD có thể tích V và điểm E trên cạnh AB sao cho AE = 3EB . Thể tích khối
V’ tứ diện EBCD là:
V
V
V
V
A. V ' =
B. V ' =
C. V ' =
D. V ' =
3
4
2
5
Câu 39: Ghép 5 khối lập phương cạnh a để được khối chữ thập như hình vẽ. Tính diện tích toàn phần Stp
của khối chữ thập đó.

Trang 4


2
A. Stp = 12a

2
B. Stp = 20a

2
C. Stp = 30a

2
D. Stp = 22a

Câu 40: Cho lăng trụ đứng ABCA’B’C’ có đáy ABC là tam giác đều cạnh bằng 1, cạnh bên AA ' = 3 .
Tính khoảng cách d từ điểm A đến mặt phẳng (A’BC)
15
2 15
3
3
A. d =
B. d =
C. d =
D. d =
5
5
2
4
mx + 2
Câu 41: Tìm các giá trị thực của tham số m để đồ thị hàm số y =
có hai đường tiệm cận ngang.
x2 +1
A. m ≥ 0
B. Với mọi m ∈ ¡
C. m ≠ 0
D. m ≤ 0
Câu 42: Cho khối lập phương có cạnh bằng 2. Người ta tăng độ dài các cạnh của khối lập phương lên 2
lần thì diện tích toàn phần của nó tăng lên bao nhiêu lần?
A. 2
B. 4
C. 8
D. 6
−x
Câu 43: Giả sử F(x) là một nguyên hàm của hàm số f ( x ) = e , biết F ( 0 ) = 2 . Tìm F ( x ) .
−x
x
x
−x
A. F ( x ) = −e + 2
B. F ( x ) = −e + 2
C. F ( x ) = −e + 3
D. F ( x ) = −e + 3
Câu 44: Một bình đựng nước dạng hình nón (không có đáy), đựng đầy nước. Người ta thả vào đó một
khối cầu có đường kính bằng chiều cao của bình nước và đo được thể tích nước tràn ra ngoài là 18π
(dm3). Biết rằng khối cầu tiếp xúc với tất cả các đường sinh của hình nón và đúng một nửa khối cầu chìm
trong nước. Tính thể tích nước còn lại trong bình.

3
A. 24π ( dm )

3
B. 54π ( dm )

C. 12π ( dm

3

)

D. 12π ( dm

3

)

Câu 45: Cho hình nón có độ dài đường sinh bằng l = 2 2 và thiết diện qua trục của hình nón là tam giác
vuông. Tính thể tích V của khối nón tương ứng.
16π

32π
A. V = 8π
B. V =
C. V =
D. V =
3
3
3
Câu 46: Cắt một khối trụ (T) bằng một mặt phẳng đi qua trục của nó, ta được một hình vuông có diện
tích bằng 9. Mệnh đề nào sau đây sai?
Trang 5


A. Khối trụ (T) có thể tích V =


.
4

27 π
.
2
C. Khối trụ (T) có diện tích xung quanh Sxq = 9 .
D. Khối trụ (T)có độ dài đường sinh l = 3 .
Câu 47: Cho mặt cầu S ( I; R ) có bán kính R = 3 . Mặt phẳng (P) cắt mặt cầu (S)theo giao tuyến là đường
tròn (C) có chu vi bằng 2π . Tính khoảng cách d từ I đến mặt phẳng (P).
7
A. d = 2 2
B. d = 2
C. d =
D. d = 7
2
Câu 48: Cho hàm số y = log 1 x . Mệnh đề nào dưới đây sai?
B. Khối trụ (T) có diện tích toàn phần Stp =

3

A. Hàm số đã cho có tập xác định D = ¡ \ { 0} .
B. Hàm số đã cho nghịch biến trên mỗi khoảng xác định.
C. Đồ thị hàm số đã cho có một tiệm cận đứng là trục Oy .
1
D. Hàm số đã cho có đạo hàm y ' = −
.
x ln 3
Câu 49: Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày
2
3
xuất hiện bệnh nhân đầu tiên đến ngày thứ t là f ( t ) = 45t − t . Nếu xem f ‘(t) là tốc độ truyền bệnh
(người / ngày) tạithời điểm t. Hỏi tốc độ truyền bệnh sẽ lớn nhất vào ngày thứ bao nhiêu kể từ ngày xuất
hiện bệnh nhân đầu tiên.
A. 30
B. 12
C. 15
D. 20
e
ln xdx
Câu 50: Cho tích phân I = ∫
2 , đặt t = 2 + ln x . Mệnh đề nào sau đây đúng?
1 x ( ln x + 2 )
3

A. I = ∫
2

( t − 2 ) dt
t

2

e

B. I = ∫
1

( t − 2 ) dt
t

2

3

C. I = ∫

( t + 2 ) dt

2

--- HẾT ---

Trang 6

t

2

e

D. I = ∫
1

( t + 2 ) dt
t2


ĐỀ THI THỬ THPT QUỐC GIA 2017
THPT KIM SƠN A- NINH BÌNH- LẦN 2

Banfileword.com
BỘ ĐỀ 2017
MÔN TOÁN

BẢNG ĐÁP ÁN

1-B

2-C

3-D

4-A

5-B

6-A

7-C

8-C

9-C

10-B

11-D

12-A

13-B

14-B

15-D

16-A

17-C

18-B

19-D

20-A

21-D

22-C

23-D

24-D

25-A

26-D

27-C

28-A

29-A

30-D

31-A

32-B

33-A

34-B

35-D

36-C

37-C

38-B

39-D

40-A

41-C

42-B

43-D

44-C

45-C

46-A

47-A

48-B

49-C

50-A

Banfileword.com
BỘ ĐỀ 2017
MÔN TOÁN

ĐỀ THI THỬ THPT QUỐC GIA 2017
THPT KIM SƠN A- NINH BÌNH- LẦN 2

LỜI GIẢI CHI TIẾT

Câu 1: Đáp án B
log a f ( x ) = b
⇔ f ( x) = ab
- Phương pháp: Giải phương trình logarit: 
0 < a ≠ 1
2
2
2
- Cách giải: log 6 x = 2 ⇔ x = 6 ⇔ x = ±6

Câu 2: Đáp án C
- Phương pháp: Tính đơn điệu của hàm số:
Định lí 1:
+ f ' ( x ) = 0, ∀ x ∈ ( a; b ) thì f là hằng số trên (a;b).
+ f ' ( x ) > 0, ∀ x ∈ ( a; b ) thì f là đồng biến trên (a;b).
+ f ' ( x ) < 0, ∀ x ∈ ( a; b ) thì f là nghịch biếnt trên (a;b).
Định lí 2:
Giả sử f ' ( x ) = 0 chỉ xảy ra tại một số hữu hạn điểm thuộc (a;b)
+ f đồng biến trên (a;b) khi và chỉ khi f ' ( x ) ≥ 0, ∀x ∈ ( a; b )
+ f nghịch biến trên (a:b) khi và chỉ khi f ' ( x ) ≤ 0, ∀x ∈ ( a; b )
- Cách giải: Hàm số đồng biến trên R ⇔ y ' ≥ 0 với mọi x
Trang 7


y = x 4 + 4x 2
y ' = 4x 3 + 8x

=> y’ chưa chắc đã lớn hơn 0 với mọi x

Đáp án B: là hàm số bậc nhất trên bậc nhất => hàm số không liên tục trên R => hàm số không thể đồng
biến trên R.
Đáp án C: y ' = 3x 2 + 4 > 0∀x ⇒ hàm số đồng biến trên R => phù hợp.
Đáp án D: y ' = 2x + 4 ⇒ y’ chưa chắc đã lớn hơn 0 với mọi x
Câu 3: Đáp án D
- Phương pháp: Hàm số mũ y = a x , với số mũ hữu tỉ thì điều kiện a > 0
4

- Cách giải: y = ( 3 − x ) 3
Đkxđ: 3 − x > 0 ⇔ x < 3
Câu 4: Đáp án A
- Phương pháp: Một khối đa diện lồi là đều nếu và chỉ nếu thỏa mãn các tính chất:
1. Tất cả các mặt của nó là các đa giác đều, bằng nhau
2. Các mặt không cắt nhau ngoài các cạnh
3. Mỗi đỉnh là giao của một số mặt như nhau (cũng là giao của số cạnh như nhau).
- Cách giải: Bát diện đều có 12 đỉnh và 6 cạnh ⇒ n = 12, m = 6 ⇒ n − m = 6
Câu 5: Đáp án B
- Phương pháp: Hàm số nhất biến: y =

ax + b
( a ≠ 0;ad − bc ≠ 0 )
cx + d

 d
1. Miền xác định D = ¡ \ − 
 c
2. y ' =

ad − bc

( cx + d )

2

=

P

( cx + d )

2

Nếu P > 0 hàm số đồng biến trên từng khoảng xác định
Nếu P < 0 hàm số nghịch biến trên từng khoảng xác định.
3. Các đường tiệm cận
d
limd y = ∞ ⇒ x = − là tiệm cận đứng.
c
x →−
c

lim y =
x →∞

a
a
⇒ y = là tiệm cận ngang.
c
c

4. Bảng biến thiên và đồ thị

Trang 8


 d a
5. Đồ thị hàm số bậc nhất trên bậc nhất được gọi là một hypebol vuông góc có tâm đối xứng I  − ; ÷
 c c
là giao điểm của hai đường tiệm cận.

- Cách giải:
Hàm số có tiệm cận ngang y = 1 , tiệm cận đứng x = 1 , điểm ( 0; −1) thuộc đồ thị hàm số
a
c =1

ax + a x + 1
 −d
=
Từ đồ thị ta có hệ:  = 1 ⇔ a = b = c = −d ⇒ y =
ax − a x − 1
 c
b
c =1

Câu 6: Đáp án A
- Phương pháp:

Sxung quanh = 2π.rh
- Cách giải: Sxq = 50.100 = 2π.r.50 ⇒ r =

50
π

Câu 7: Đáp án C
Trang 9


- Phương pháp: Đường cong C: y = f ( x ) , đường thẳng d: y = ax + b
+ Xét phương trình hoành độ giao điểm C và d
+ Số nghiệm của phương trình là số giao điểm cuả C và d
Giải pt hoành độ giao điểm ta có tọa độ các giao điểm.
- Cách giải: d : y = − x − 3 ; y =
Xét pt hoành độ giao điểm:

x −1
x+2

 x = −5
x −1
= − x − 3 ⇔ x 2 + 6x + 5 = 0 ⇔ 
x+2
 x = −1

⇒ A ( −5; 2 ) ; B ( −1; −2 ) ; M ( −3;0 )
Câu 8: Đáp án C
- Phương pháp: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f ( x ) . Ta làm theo các bước sau:
+ Tìm tập xác định của hàm số.
+ Tìm y'
+ Tìm các điểm x1,x2,...xn thuộc khoảng (a,b) mà tại đó y' = 0 hoặc y' không xác định.
+ Tính các giá trị f(a),f(b),f(x1),f(x2)...f(xn)
f ( x ) = max { f ( a ) , f ( x1 ) , f ( x 2 ) ,..., f ( x n ) }
Kết luận: max
[ a;b]
min f ( x ) = min { f ( a ) , f ( x1 ) , f ( x 2 ) ,..., f ( x n ) }
[ a;b]

- Cách giải: y = 7 − 4x
7

Tập xác định : D =  −∞; 
4

y' =

−2x
=0⇔x=0
7 − 4x

y ( −1) = 2 3; y ( 0 ) = 7; y ( 1) = 3
min y = 3
[ −1;1]

Câu 9: Đáp án C
- Phương pháp: Sử dụng phương pháp đặt ẩn phụ đưa pt về dạng ax 2 + bx + c = 0
Giải phương trình x1 , x 2 . Tìm x1 + x 2
- Cách giải: 2.25x − 5x +1 + 2 = 0 ⇔ 2.52x − 5.5x + 2 = 0

Trang 10


5 x = 2
 x = log 5 2
⇔ x 1⇔
⇒ x1 + x 2 = 0
5 =
x = − log 5 2


2
Câu 10: Đáp án B
- Phương pháp: Tích phân từng phần:
Nếu u(x),v(x) là hai hàm số có đạo hàm liên tục trên đoạn [a,b] thì :
b

∫ u ( x ) .v ' ( x ) dx = u ( x ) .v ( x )
a

b
a

b

− ∫ v ( x ) u ' ( x ) dx
a

m

m

m

1

1

1

- Cách giải: A = ∫ ( ln x + 1) dx = ∫ ln xdx + ∫ dx
m

I = ∫ ln xdx
1

1

 u = ln x du = dx
⇒
x
Đặt 
dv = dx  v = x

m

⇒ I = x ln x 1 − ∫ dx
m

1

m = e
m
A = x ln x 1 = m ln m = m ⇒ 
m = 0
Câu 11: Đáp án D
- Phương pháp:
+ Nếu hàm số f(x) liên tục trên đoạn [a; b] thì diện tích hình phẳng giới hạn bởi đồ thị của hàm số y =
f(x) và các đường thẳng x = a; x = b; y = 0 được tính theo công thức:
b
 ∫ f ( x ) dx khi f ( x ) ≥ 0
b
a
S = ∫ f ( x ) dx =  b
a
− f x dx khi f x ≤ 0
( )
 ∫ ( )
 a
+ Miền phẳng D giới hạn bởi các đường: x = a, x = b ( a ≤ b ) , y = f1 ( x ) , y = f 2 ( x ) trong đó f1, f2 liên tục
từng khúc trên [a,b]. Gọi diện tích của miền phẳng D là S.
Theo ý nghĩa hình học của tích phân xác định, nhận được công thức tính S:
b

S = ∫ f1 ( x ) − f 2 ( x ) dx
a

y = x 2
 x = 0, y = 0
⇒
- Cách giải: Giao điểm của đồ thị y = x , y = 2x là nghiệm của hệ: 
 y = 2x  x = 2, y = 4
Trang 11
2


2

Diện tích cần tìm là: S = ∫
0

2

2

1 
4

x − 2x dx = ∫ ( 2x − x ) dx =  x 2 − x 3 ÷ =
3 0 3

0
2

2

Câu 12: Đáp án A
- Phương pháp: Ban đầu dân số là N, mỗi năm dân số tăng là r
Dân số sau 1 năm là N. ( 1 + r )
Dân số sau 2 năm là N. ( 1 + r )

2


Dân số sau n năm là N. ( 1 + r )

n

- Cách giải: Dân số sau 15 năm là 91, 7.1, 01115

Câu 13: Đáp án B
- Phương pháp: Phương pháp 1: Tìm cực trị bằng cách sử dụng bảng biến thiên
Bước 1: Tìm tập xác định của hàm số f(x)
Bước 2: Tìm y', giải phương trình y' = 0.
Bước 3: Lập bảng biến thiên và kết luận:
* Nếu y' đổi dấu từ - sang + khi qua điểm x0 (từ trái sang phải) thì hàm số đạt cực tiểu tại x0.
* Nếu y' đổi dấu từ + sang - khi qua điểm x0 (từ trái sang phải) thì hàm số đạt cực tiểu tại x0.
Phương pháp 2: Tìm cực trị bằng cách sử dụng đạo hàm cấp 2
Phương pháp này thường được sử dụng đối với các hàm số mà việc lập bảng biến thiên tương
đối khó khăn. Ta làm theo các bước sau:
Bước 1: Tìm tập xác định.
Bước 2: Tính y'. Giải phương trình y' = 0 và kí hiệu xi (i=1,2,...) là các nghiệm của nó.
Bước 3: Tính f"(x) và f"(xi) rồi kết luận:
* Nếu f"(xi)<0 thì hàm số đạt cực đại tại xi.
* Nếu f"(xi)>0 thì hàm số đạt cực tiểu tại xi.
- Cách giải: y = − x 4 + 5x 2 + 2
Tập xác định D = R
x = 0
y ' = −4x + 10x = 0 ⇔ 
 x = ± 10

2
3

Bảng biến thiên:
Trang 12


x

−∞

y’

10
2


+

0

10
2

0
-

0

+

0

y

Hàm số có 2 cực đại
Câu 14: Đáp án B
- Phương pháp:

Stp = πrl + πr 2
- Cách giải: Từ lí thuyết
Câu 15: Đáp án D
- Phương pháp: Đồ thị C : y = f(x)
f ( x ) = ±∞
+ x = a là tiệm cận đứng của C ⇔ lim
x →a
f ( x) = b
+ y = b là tiệm cận ngang của C ⇔ xlim
→±∞
- Cách giải:
lim = 2 ⇒ đồ thị hàm số có tiệm cận ngang là y = 2

x →+∞

lim = −2 ⇒ đồ thị hàm số có tiệm cận ngang là y = −2

x →−∞

Câu 16: Đáp án A
m
- Phương pháp: log a b = m log a b

log a ( b.c ) = log a b + log a c

Trang 13

+∞
-


log a

b
= log a b − log a c
c

- Cách giải:
P = ln 21 + 2 ln14 − 3ln

7
= ln 3 + ln 7 + 2 ( ln 2 + ln 7 ) − 3 ( ln 7 − ln 2 )
2

= 5ln 2 + ln 3 = 5a + b

Câu 17: Đáp án C
x
x
- Phương pháp: ( a ) ' = a ln a
x
- Cách giải: f ( x ) = 4 − 3

f ' ( x ) = 4x ln 4
f ( 1) = 4 ln 4
Câu 18: Đáp án B
- Phương pháp: Với a, c ≠ 1 ta có: log a b = log a c.log c b
log a b =

log c b
log c a

- Cách giải: Đáp án A, C, D đều thỏa mãn do a, b ≠ 1
Đáp án B sai do log c a chưa có điều kiện c ≠ 1 .
Câu 19: Đáp án D
- Phương pháp: Tìm cực trị bằng cách sử dụng đạo hàm cấp 2:
Bước 1: Tìm tập xác định.
Bước 2: Tính y'. Giải phương trình y' = 0 và kí hiệu xi (i=1,2,...) là các nghiệm của nó.
Bước 3: Tính f"(x) và f"(xi) rồi kết luận:
Nếu f"(xi) < 0 thì hàm số đạt cực đại tại xi.
Nếu f"(xi) > 0 thì hàm số đạt cực tiểu tại xi.
1 3
2
2
- Cách giải: y = x − mx + ( m − m + 1) x + 1
3
Tập xác định: D = ¡
y ' = x 2 − 2mx + m 2 − m + 1
y" = 2x − 2m
 y ' ( 1) = 0
 m 2 − 3m + 2 = 0
x
=
1


⇔m=2
Để hàm số đạt cực trị tại


 y" ( 1) < 0
m > 1
Trang 14


Câu 20: Đáp án A
b
- Phương pháp: Giải bpt logarit: log a f ( x ) < b ( a > 1) ⇔ 0 < f ( x ) < a
2
- Cách giải: log 3 ( x − 4x + 4 ) < 0

 x 2 − 4x + 4 > 0
x ≠ 2
⇔ 2
⇔
 x − 4x + 4 < 1
1 < x < 3
Câu 21: Đáp án D
1
- Phương pháp: SA là chiều cao tứ diện ⇒ VSABC = SA.SABC
3
- Cách giải: SABC = a 2

3
4

1
1
3 1 3
⇒ VSABC = SA.SABC = .a 3.a 2 .
= a
3
3
4
4
Câu 22: Đáp án C
x
x
- Phương pháp: ∫ e dx = e + C

1

∫ x dx = n + 1 x
n

- Cách giải:

∫( e

x

n +1

+C

− 2x ) dx = e x − x 2 + c

Câu 23: Đáp án D
- Phương pháp: Vật thể tròn xoay: Là vật thể được tạo ra khi quay hình thang cong giới hạn bởi đường y
= f(x), x = a, x = b và y = 0 quanh trục Ox. Khi đó thể tích vật thể tròn xoay được tính theo công thức:
b

Vx = π ∫ f 2 ( x ) dx
a

a

- Cách giải: V = π∫
1

a

1
1
 1
dx = − π
= π 1 − ÷
2
x
x1
 a

Câu 24: Đáp án D
- Phương pháp: Hàm số y = f ( x )
Hàm số đồng biến trên R ⇔ y ' > 0 với mọi x
- Cách giải: y = mx − sin 3x
y ' = m − 3cos 3 x > 0∀ x
−3 ≤ 3cos 3 x ≤ 3 ⇒ m ≥ 3
Câu 25: Đáp án A
Trang 15


- Phương pháp: ∫ sin xdx = − cos x + C ; ∫ cos xdx = sin x + C
1

∫ x dx = n + 1 x
n

n +1

+C

1 5
4
4
- Cách giải: ∫ f ( x ) dx = ∫ sin x.cos xdx = ∫ sin x.d ( sin x ) = sin x + C
5
Câu 26: Đáp án D
2
- Phương pháp: y = ax + bx + c ( a ≠ 0 )

Với a < 0 thì hàm số có cực đại. Khi đó 3 là giá trị cực đại của hàm số.
- Cách giải: y = − x 2 + mx − 1
Giá trị lớn nhất của hàm số đạt 3
y = − x 2 + mx − 1 ⇒ y ' = −2x + m = 0 ⇒ x =

m
2

2

m
m
m
y  ÷ = −  ÷ + m. − 1 = 3 ⇒ m 2 = 16 ⇒ m = ±4
2
2
2
Câu 27: Đáp án C
- Phương pháp: a, b > 0 ;
0 < c < 1 : log c a > log c b ⇒ a < b

c > 1 : log c a > log c b ⇒ a > b
- Cách giải: Từ lí thuyết ta thấy C sai do

1
< 1 nên
3

log 1 a > log 1 b ⇒ a < b
3

3

Câu 28: Đáp án A
- Phương pháp: Quy tắc tính tích phân
5

dx

1

∫ ax + b = a ln ax + b + C

5

dx
1
= ln 2x − 1 = ln 3 = ln a ⇒ a = 3
- Cách giải: ∫
2x − 1 2
1
1
Câu 29: Đáp án A
- Phương pháp: Dựa vào bảng biến thiên
- Cách giải: Đáp án A: từ bảng biến thiên ta thấy x = ±1 hàm số đạt cực tiểu, x = 0 hàm số đạt cực đại.
Đáp án B: Hàm số có giá trị lớn nhất bằng -3 và giá trị nhỏ nhất bằng -4 => sai vì hàm số đạt giá trị cực
đại bằng -3.
Đáp án C: Sai vì hàm số có 3 cực trị
Trang 16


Đáp án D: Sai vì hàm số đạt giá trị cực đại tại x = 0
Câu 30: Đáp án D
- Phương pháp: Hàm số y = f ( x )
Dựa vào tính đơn điệu của hàm số ta có:
+ f ' ( x ) = 0, ∀ x ∈ ( a; b ) thì f là hằng số trên (a;b).
+ f ' ( x ) > 0, ∀ x ∈ ( a; b ) thì f là đồng biến trên (a;b).
+ f ' ( x ) < 0, ∀ x ∈ ( a; b ) thì f là nghịch số trên (a;b).
- Cách giải: Đáp án A: y = 2016x + 12 , tập xác định D = R.
y ' = 2016 > 0 ⇒ hàm số đồng biến trên R
Đáp án B: y = 3x 4 + x 2 + 4
y ' = 12x 3 + 2x = 0 ⇔ x = 0
x > 0 ⇒ y' > 0
=>y’ chyển dấu từ - sang + khi đi qua x = 0 => hàm số nghịch biến trên ( −∞;0 )
x < 0 ⇒ y' < 0
Đáp án C: y = − x 3 − 3x + 2 , tập xác định D = R
y ' = −3x 2 − 3 < 0, ∀x ⇒ hàm số nghịch biến trên R
Đáp án D: y =
y' =

−1

( x − 2)

2

3x − 5
, tập xác định D = ¡ \ { 2}
x−2

< 0 ⇒ hàm số đồng biến trên từng khoảng xác định. =>sai

Câu 31: Đáp án A
- Phương pháp: Nếu hàm số y = f ( x ) liên tục trên đoạn [ a; b ] thì diện tích S của hình phẳng giới hạn
b

bởi đồ thị hàm số y = f ( x ) , trục hoành và hai đường thẳng x = a; x = b là: S = ∫ f ( x ) dx
a

- Cách giải: Từ lí thuyết
Câu 32: Đáp án B
- Phương pháp: Hàm số y = log a x
đK: 0 < a ≠ 1
Tập xác định D = ( 0; +∞ )
- Cách giải: y = ln ( x − 2 ) + log ( x + 1)
2

Trang 17


( x − 2 ) 2 > 0
⇔ −1 < x ≠ 2
Điều kiện xác định: 
( x + 1) > 0
Câu 33: Đáp án A
- Phương pháp: Nếu hàm số y = f ( x ) liên tục trên đoạn [ a; b ] thì diện tích S của hình phẳng giới hạn
b

bởi đồ thị hàm số y = f ( x ) , trục hoành và hai đường thẳng x = a; x = b là: S = ∫ f ( x ) dx
a

1
- Cách giải: y = ln x, x = , x = e, y = 0
e
e

1

e

1
e

1
e

1

S = ∫ ln x dx = − ∫ ln xdx + ∫ ln x.dx = ( x − x ln x ) 1 + ( x ln x − x ) 1 = 2 −
1

e

e

Câu 34: Đáp án B
- Phương pháp:

VABC.A 'B'C' = AA '.SABC
Hệ thức lượng trong tam giác
Định lí pitago
- Cách giải:
Gọi AA’= x
Ta có: BC2 = AB2 + AC 2 − 2AB.AC.cos1200 = 7
A ' B2 = A ' D 2 + BD 2
⇒ x2 +1 =

x2
+ 11 ⇒ x = 2 5
2

VABC.A 'B'C' = AA '.SABC = AA '.AB.AC.sin1200 = 2 5.

3
= 15
2

Trang 18

2
e


Câu 35: Đáp án D
- Phương pháp: Hàm số y = f(x)
Hàm số không có cực trị ⇔ y ' = 0 vô nghiệm
- Cách giải:
y = x 2 + 4x − 3
Đáp án A:
y ' = 2x + 4 = 0 ⇔ x = −2
y = − x 3 + 3x 2 + 1
Đáp án B:

x = 0
y ' = −3x 2 + 6x = 0 ⇔ 
x = 2
y = − x 4 + 2x 2 + 2

Đáp án C:

Đáp án D:

x = 0
y ' = −4x 3 + 4x = 0 ⇔ 
 x = ±1
y = x 3 + 3x − 2
y ' = 3x 2 + 3 > 0∀x

=> hàm số không có cực trị

Câu 36: Đáp án C
- Phương pháp:
Hình đa diện (gọi tắt là đa diện) (H) là hình được tạo bởi một số hữu hạn các đa giác thỏa mãn hai điều
kiện:
Hai đa giác phân biệt chỉ có thể hoặc không giao nhau, hoặc chỉ có một đỉnh chung, hoặc chỉ có một
cạnh chung.
Mỗi cạnh của đa giác nào cũng là cạnh chung của đúng hai đa giác.
Mỗi đa giác như thế được gọi là một mặt của hình đa diện (H). Các đỉnh, cạnh của các đa giác ấy theo thứ
tự gọi là các đỉnh, cạnh của hình đa diện (H).
- Cách giải: Từ lí thuyết hình 2 không phải hình đa diện
Câu 37: Đáp án C
- Phương pháp:

Trang 19


Tâm của 2 đường thẳng d, d’ nằm trên đường tròn qua tâm hình cầu
Câu 38: Đáp án B
- Phương pháp:

VEBCD EB
=
VABCD AB
- Cách giải:

VEBCD EB 1
=
=
VABCD AB 4

Câu 39: Đáp án D
- Phương pháp: Diện tích hình vuông cạnh a là a 2
Diện tích toàn phần hình lập phương là 6a 2
- Cách giải: Hình được tạo bởi 5 khối lập phương trên có tổng só mặt là: 6.5 − 8 = 22
Diện tích toàn phần của khối lập phương là 22a 2
Câu 40: Đáp án A
- Phương pháp: Nếu SH ⊥ ( α ) ⇒ d ( S; α ) = SH
- Cách giải:

Gọi I là trung điểm của BC
Trang 20


Hạ AH vuông góc với A’I
 AI ⊥ BC
⇒ BC ⊥ ( AA ' I ) ⇒ BC ⊥ AH
Ta có: 
 A ' I ⊥ BC
 A ' I ⊥ AH
⇒ AH ⊥ ( A 'BC ) ⇒ d ( A; ( A ' BC ) ) = AH

 BC ⊥ AH
AI =

3
1
1
1
15

=
+ 2 ⇒ AH =
2
2
2
AH
AA
AI
5

Câu 41: Đáp án C
- Phương pháp: Đồ thị C : y = f(x)
f ( x ) = ±∞
+ x = a là tiệm cận đứng của C ⇔ lim
x →a
f ( x) = b
+ y = b là tiệm cận ngang của C ⇔ xlim
→±∞
- Cách giải: =>hàm số không có tiệm cận ngang.
lim y = lim

x →−∞

x →−∞

lim y = lim

x →+∞

x →+∞

mx + 2
x2 +1
mx + 2
x2 +1

= −m
=m

Hàm số có 2 tiệm cận ngang ⇔ m ≠ − m ⇔ m ≠ 0
Câu 42: Đáp án B
- Phương pháp: Diện tích toàn phần hình lập phương có cạnh là a là 6a 2
- Cách giải:
Cạnh lập phương ban đầu là a
Cạnh hình lập phương tăng gấp 2 lần là 2a
=> Diện tích toàn phần hình lập phương là 6.4a 2
Diện tích toàn phần hình lập phương tăng lên 4 lần
Câu 43: Đáp án D
1 ax
ax
- Phương pháp: ∫ e dx = e + C
a
−x
−x
- Cách giải: ∫ f ( x ) dx = ∫ e dx = −e + C

F ( 0 ) = 2 ⇒ −1 + C = 2 ⇒ C = 3
Câu 44: Đáp án C
4 3
πR
3
Trang 21

- Phương pháp: Thể tích hình cầu có bán kính là R là:


Thể tích hình nón có bán kính đáy là R, chiều cao là h là:

1 2
πR h
3

- Cách giải:
Ta có:

1
V hình cầu = 18π
2

1 4
. .π.R 3 = 18π ⇒ R = 3
2 3
⇒ h = 2R = 6
·
Tam giác OHI vuông tại H có góc O = 600 nên góc HOK
= 300 nên OK = 2 3
Vậy bán kính đường đáy hình nón bằng 2 3
1
V hình nón = .6π.12 = 24π
3
Câu 45: Đáp án C
- Phương pháp: Thể tích hình nón có bán kính đáy là R, chiều cao là h là:

1 2
πR h
3

- Cách giải: Thiết diện qua trục của hình nón là tam giác vuông => đường sinh là cạnh bên của tam giác
vuông cân
⇒R=h=2
1
1
= πR 2 h = π.8
3
3
Câu 46: Đáp án A
- Phương pháp:

V = πR 2 h
Sxq = 2πRh
Trang 22


Stp = 2πRh + 2πR 2
- Cách giải: ABCD la hình vuông có diện tích bằng 9 ⇒ h = 3, R =
V = πR 2 h =

3
2

27
π
4

Sxq = 2πRh = 9π
Stp = 2πRh + 2πR 2 =

27
π
2

Câu 47: Đáp án A
- Phương pháp:

d ( I, P ) = II '
- Cách giải: Gọi bán kính đường tròn C là r => r = 1
II '2 = 32 − 12 = 8 ⇒ II ' = 2 2
Câu 48: Đáp án B
- Phương pháp: Hàm số y = log a x
Đk: 0 < a ≠ 1
Tập xác định: D = ( 0; +∞ ) , y = log a x nhận mọi giá trị trong R.
Hàm số đồng biến trên R khi a > 1 và nghịch biến trên R khi 0 < a ≠ 1
- Cách giải:
y = log 1 x
3

Đáp án A: hàm số xác định x > 0 ⇒ x ≠ 0 ⇒ đúng
Đáp án B: hàm số nghịch biến trên R khi 0 < a ≠ 1 ⇒ đúng
y = 0 ⇒ đúng
Đáp án C: lim
x →∞
Trang 23


( x)'

Đáp án D: y ' =

x ln 3

=

1
⇒ sai
x ln 3

Câu 49: Đáp án C
- Phương pháp: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f ( x ) . Ta làm theo các bước sau:
+ Tìm tập xác định của hàm số.
+ Tìm y'
+ Tìm các điểm x1,x2,...xn thuộc khoảng (a,b) mà tại đó y' = 0 hoặc y' không xác định.
+ Tính các giá trị f(a),f(b),f(x1),f(x2)...f(xn)
f ( x ) = max { f ( a ) , f ( x1 ) , f ( x 2 ) ,..., f ( x n ) }
Kết luận: max
[ a;b]
min f ( x ) = min { f ( a ) , f ( x1 ) , f ( x 2 ) ,..., f ( x n ) }
[ a;b]

2
3
- Cách giải: f ( t ) = 45t − t

f ' ( t ) = 90t − 3t 2
f " ( t ) = 90 − 6t = 0 ⇔ t = 15
Câu 50: Đáp án A
- Phương pháp: Các phép biến đổi logarit
e

- Cách giải: I = ∫
1

ln xdx
x ( ln x + 2 )

2

t −2
dx = e dt
ln x + 2 = t ⇒ 
t −2
 x = e

t ∈ ( 2;3)
3

I=∫
2

t−2
dt
t2

Banfileword.com
BỘ ĐỀ 2017
MÔN TOÁN

ĐỀ THI THỬ THPT QUỐC GIA 2017
THPT KIM SƠN A- NINH BÌNH- LẦN 2

ĐỊNH DẠNG MCMIX

2
Câu 1: Giải phương trình log 6 x = 2

Trang 24


{

A. x = ± 12

}

B. x ∈ { ±6}

{

C. x ∈ ± 6

}

[
]
Câu 2: Trong các hàm số sau, hàm số nào đồng biến trên ¡ ?
x +1
A. y = x 4 + 4x 2
B. y =
C. y = x 3 + 4x
x+4
[
]

D. x ∈ { ±36}

D. y = x 2 + 4x

4

Câu 3: Tìm tập xác định D của hàm số y = ( 3 − x ) 3 .

A. D = ¡ \ { 3}
B. D = ¡
C. D = ( −∞;3]
D. D = ( −∞;3)
[
]
Câu 4: Gọi n m, lần lượt là số cạnh và số đỉnh của hình bát diện đều. Tính n − m ?
A. n − m = 6
B. n − m = 4
C. n − m = 2
D. n − m = 3
[
]
Câu 5: Đồ thị ở hình vẽ bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở 4 phương án A, B,
C, D dưới đây. Hỏi hàm số đó là hàm số nào ?

A. y =

2x + 1
2x − 1

B. y =

x +1
x −1

C. y =

x −1
x +1

D. y =

2x − 1
2x + 1

[
]
Câu 6: Một tấm tôn hình chữ nhật có kích thước 50cmx100cm, người ta gò tấm tôn đó thành mặt xung
quanh của thùng đựng nước hình trụ có chiều cao 50cm. Tính bán kính R của đáy thùng gò được.
10
50
100
5 2
cm
cm
cm
A. R = cm
B. R =
C. R =
D. R =
π
π
π
π
[
]
x −1
Câu 7: Biết rằng đường thẳng y = − x − 3 cắt đồ thị hàm số y =
tại hai điểm phân biệt A,B. Tìm
x+2
tọa độ trung điểm M của đoạn thẳng AB.
A. M ( −3; 4 )
B. M ( 1; −4 )
C. M ( −3;0 )
D. M ( −7; 4 )
[
]
Câu 8: Tìm giá trị nhỏ nhất của hàm số y = 7 − 4x trên [ −1;1] .
y = 11
A. min
[ −1;1]

y=0
B. min
[ −1;1]

y= 3
C. min
[ −1;1]

y=3
D. min
[ −1;1]

[
]
Câu 9: Giải phương trình 2.25x − 5x +1 + 2 = 0 ta được hai nghiệm là x1 và x 2 . Tính x1 + x 2 .
Trang 25


Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay

×
x