Tải bản đầy đủ

De cuong on tap TOAN 8 HK II - va 10 de luyen thi cuoi nam

Đề cơng ôn tập học kỳ II _ Toán 8
(Năm học 2007 2008)
A Lý thuyết
1, Thế nào là hai phơng trình tơng đơng ?
Các phơng trình sau đây có tơng đơng không ? Vì sao ?
a) 3x + 9 = 0 và x
2
9 = 0 b)
2
1
x + 5 = 0 và
0
1
2
2
=
+
+
x
x
2, Phát biểu qui tắc chuyển vế để biến đổi phơng trình ? Các phơng trình sau có tơng đơng không ? Vì

sao ?
a) 2x
2
+ 3x 1 = 2x
2
1 và 3x = 0 b)
2
1
12
2
1
13

++=

+
x
x
x
x
và 3x 1
= 2x + 1
3, Phát biểu qui tắc nhân để biến đổi bất phơng trình ? Các bất phơng trình sau có tơng đơng không ? Vì
sao ?
a)
2
1
x
2
x > 1 và x
2
- 2x > 2 b)
3
1 x
< 1 và x 1 < 3
4, Khi giải phơng trình chứa ẩn ở mẫu, ta phải chú ý điều gì ?
Cho phơng trình :
)1)(1(1
1
44
2
+
=


+

xx
x
xx
. Điều kiện xác định của phơng trình là :
A . x 1 B . x 1 C . x -1 D . x 0 và x 1
5, Phát biểu, vẽ hình, ghi giả thiết và kết luận của định lí Ta-let, định lí Ta-let đảo, hệ quả của định lí
Ta-let . Cho hình vẽ sau : Hãy chọn phát biểu đúng :
A .
CD
AB
OB
OA
=
B .
OF
OE
OD
OC
=
C .
OE
OC
EF
AB
=
D .
OF
OD
EF
CD
=
6, Phát biểu tính chất đờng phân giác trong của một tam giác. á p dụng : Cho ABC có AB = 12 cm ;
AC = 9 cm ; BC = 14 cm . Đờng phân giác của góc A cắt cạnh BC ở D . Tính độ dài DB, DC.
7, Phát biểu các định lý về 3 trờng hợp đồng dạng của hai tam giác.
Trong các phát biểu sau đây, phát biểu nào sai ?
A . Hai tam giác đều thì đồng dạng với nhau.
B . Hai tam giác cân thì đồng dạng với nhau.
C . Hai tam giác vuông có hai góc nhọn tơng ứng bằng nhau thì đồng dạng với nhau.
D . Hai tam giác vuông có hai cặp cạnh góc vuông tỉ lệ với nhau thì đồng dạng với nhau.
8, Phát biểu định lý về tỉ số hai đờng cao, tỉ số hai diện tích của hai tam giác đồng dạng.
Cho ABC ABC với tỉ số đồng dạng k =
3
1
. Phát biểu nào sau đây là đúng :
A . Nếu đờng cao AH = 5 thì đờng cao AH là
5
1
B . Nếu đờng trung tuyến AM = 6 thì đờng trung tuyến AM = 2
C . Nếu chu vi ABC là 12 thì chu vi ABC là 4.
D . Nếu diện tích ABC là 243 thì diện tích ABC là 27
9, a) - Hình lập phơng có mấy mặt, mấy cạnh, mấy đỉnh? Các mặt là những hình gì ?
- Hình hộp chữ nhật có mấy mặt, mấy cạnh , mấy đỉnh ?
- Hình lăng trụ đứng tam giác có mấy cạnh, mấy đỉnh, mấy mặt ?
b) Cho hình lập phơng ABCD.ABCD, hai đáy ABCD và ABCD lần lợt có tâm là O và O.
Hãy xác định đúng, sai các khẳng định sau :
Khẳng định Đúng Sai
A OO song song với AA, BB, CC, DD
O
F
A B
D
C
E
B OO vuông góc với BD và BD
C OO là trung trực của BD, BD, AC, AC
D Tứ giác BBDD là hình vuông
E O cách đều bốn đỉnh A, B, C, D
F ACCA là hình bình hành
G OO là đờng cao của hình chóp OABCD
H
''''.'.
3
1
DCBAABCDABCDO
VV =
B Bài tập. ( Làm các bài ôn tập cuối năm tr 130 SGK)
I . Đại số :
Bài 1 : Cho biểu thức : P =










+



+

+
9
12
3
3
3
3
:
3
1
2
2
2
x
x
x
x
x
x
xx
x
a) Rút gọn P b) Tính giá trị của P khi |2x - 1| =5 c) Tìm giá trị của x để P < 0
Bài 2 : Cho biểu thức : M =














+


+ x
x
x
xx
x 5
1.
25
10
5
5
5
2
a) Rút gọn M b) Tính giá trị của x để M =
20
1
x + 1
c) Tìm số nguyên x để giá trị tơng ứng của M là số nguyên.
Bài 3 : Cho biểu thức : A =
x
xx
x
x

+
+

+
+
2
1
6
5
3
2
2
a) Rút gọn A b) Tìm x để A > 0 c)Tìm x Z để A nguyên dơng.
Bài 4 : Cho biểu thức : B =







+








+
xx
xx
x
1
2
3:
32
5
352
2
2
a) Rút gọn B b) Tìm x để B =
2
1
x
c) Tìm x để B > 0
Bài 5 : Cho biểu thức C =
1
1
:
1
1
1
1
4542
+
+







+

+ xxx
x
x
x
x
a) Rút gọn C b)Tìm x để C = 0 c) Tìm giá trị nhỏ nhất của C.
Bài 6 : Giải các phơng trình :
a) 2x + 5 = 20 3x b) (2x 1)
2
(x + 3)
2
= 0
c)
7
116
2
45 +
=
xx
d)
x
xxx


=


+
3
23
4
2
6
12
e)
3
52
32
4
1
2
2
+

=
+
+
x
x
xx
x
x
g)
2
222
9
37
33
x
xx
x
x
x
xx


=


+

h)
306
7
250
15
204
3
2
+
+

+
x
x
x
i)
45
15
43
17
33
27
31
29 +

+
=
+

+ xxxx

Bài 7 : Giải các bất phơng trình và biểu diễn tập nghiệm trên trục số :
a)
3
2
5
6

+ xx
< 2 b)
12
12
1
6
3
4
5
22




+ xxx

c)
1
1
51



x
x
d)
2
3
+

x
<
x3
2
e) x
2
4x + 3 > 0 g) x
3
2x
2
+ 3x 2 0
h) 2 3x < 7 i ) 2x - 3 5
Bài 8 : Giải bài toán bằng cách lập phơng trình :
a) Lúc 6 giờ, một ôtô xuất phát từ A đến B với vận tốc trung bình 40 km/h. Khi đến B, ngời lái xe
làm nhiệm vụ giao nhận hàng trong 30 phút rồi cho xe quay trở về A với vận tốc trung bình 30
km/h. Tính quãng đờng AB, biết rằng ôtô về đến A lúc 10 giờ cùng ngày .
b) Hai ngời đi bộ khởi hành ở hai địa điểm cách nhau 4,18 km, đi ngợc chiều để gặp nhau. Ngời
thứ nhất mỗi giờ đi đợc 5,7 km, còn ngời thứ hai mỗi giờ đi đợc 6,3 km, nhng xuất phát sau ng-
ời thứ nhất 4 phút. Hỏi ngời thứ hai đi trong bao lâu thì gặp ngời thứ nhất ?
c) Một ngời đi xe đạp từ A đến B cách nhau 24 km. Một giờ sau, một ngời đi xe máy từ A và đến
B trớc ngời đi xe đạp 20 phút. Tính vận tốc của mỗi xe, biết vận tốc của xe máy gấp 3 lần vận
tốc xe đạp.
d) Một tổ may áo theo kế hoạch mỗi ngày phải may 30 áo. Tổ đã may mỗi ngày 40 áo nên đã
hoàn thành trớc thời hạn 3 ngày, ngoài ra còn may thêm đợc 20 chiếc áo nữa. Tính số áo mà tổ
đó phải may theo kế hoạch.
e) Hai công nhân nếu làm chung thì trong 12 giờ sẽ hoàn thành song một công việc. Họ làm
chung với nhau trong 4 giờ thì ngời thứ nhất chuyển đi làm việc khác, ngời thứ hai làm nốt
công việc trong 10 giờ. Hỏi ngời thứ hai làm một mình thì bao lâu hoàn thành song công việc.
f) Hai tổ sản xuất cùng làm chung công việc thì hoàn thành trong 2 giờ. Hỏi nếu làm riêng một
mình thì mỗi tổ phải hết bao nhiêu thời gian mới hoàn thành công việc, biết khi làm riêng, tổ I
hoàn thành sớm hơn tổ II là 3 giờ.
II . Hình học :
Bài 1 : Cho tam giác ABC vuông ở A ; AB = 15 cm ; CA = 20 cm , đờng cao AH.
a) Tính độ dài BC, AH,
b) Gọi D là điểm đối xứng với B qua H. Vẽ hình bình hành ADCE . Tứ giác ABCE là hình gì ?
Chứng minh
c) Tính độ dài AE
d) Tính diện tích tứ giác ABCE
Bài 2 : Cho hình thang cân MNPQ (MN // PQ, MN < PQ), NP = 15 cm, đờng cao NI = 12 cm,
QI = 16 cm
a) Tính độ dài IP, MN
b) Chứng minh rằng : QN NP
c) Tính diện tích hình thang MNPQ
d) Gọi E là trung điểm của PQ. Đờng thẳng vuông góc với EN tại N cắt đờng thẳng PQ tại K.
Chứng minh rằng : KN
2
= KP. KQ
Bài 3 : Cho tam giác ABC vuông tại A có đờng cao AH, AB = 8 cm, AC = 6 cm. Gọi E là trung điểm của
AH, D là trung điểm của HC. Dựng hình bình hành BEDK.
a) Tứ giác ABKC là hình gì ?
b) Tính độ dài của các đoạn thẳng BC, AH, BH, CH, AD
a) Tìm số đo góc ADK.
Bài 4 : Cho tam giác ABC một đờng thẳng song song với BC cắt cạnh AB tại D, cắt cạnh AC tại E thoả
mãn điều kiện DC
2
= BC . DE
a) Chứng minh DEC CDB
b) Suy ra cách dựng DE
c) Chứng minh AD
2
= AC . AE ; AC
2
= AB . AD
Bài 5 : Cho hình bình hành ABCD , trên tia đối của tia DA lấy DM = AB, trên tia đối của tia BA lấy BN =
AD. Chứng minh :
a) CBN và CDM cân.
b) CBN và MDC đồng dạng.
c) Chứng minh M, C, N thẳng hàng.
Bài 6 : Cho tam giác ABC (AB < AC), hai đờng cao BE và CF gặp nhau tại H, các đờng thẳng kẻ từ B
song song với CF và từ C song song với BE gặp nhau tại D. Chứng minh
a) ABE ACF
b) AE . CB = AC . EF
c) Gọi I là trung điểm của BC . Chứng minh H, I, D thẳng hàng.
Bài 7 : Cho hình chóp tứ giác đều SABCD có cạnh đáy bằng 10 cm, trung đoạn bằng 13 cm.
a) Tính độ dài cạnh bên
b) Tính diện tích xung quanh hình chóp
c) Tính thể tích hình chóp.
Bài 8 : Cho hình hộp chữ nhật ABCDEFGH với các kích thớc AB = 12 cm, BC = 9 cm và AE = 10 cm.
a) Tính diện tích toàn phần và thể tích của hình hộp
b) Gọi I là tâm đối xứng của hình chữ nhật EFGH, O là tâm đối xứng của hình chữ nhật ABCD.
Đờng thẳng IO song song với những mặt phẳng nào ?
c) Chứng tỏ rằng hình chóp IABCD có các cạnh bên bằng nhau. Hình chóp IABCD có phải là
hình chóp đều không ?
d) Tính diện tích xung quanh của hình chóp IABCD.
Ngời soạn : Nguyễn Lan Hơng
Họ và tên : . . . . . . . . . . . . . .
Tiết 56 Kiểm tra 1 tiết ( CHƯƠNG III )
Bài 1 : a)Phát biểu định lý về tỉ số hai đờng cao, tỉ số hai diện tích của hai tam giác đồng dạng. (1
điểm )
b) Cho ABC ABC với tỉ số đồng dạng k =
3
1
. Phát biểu nào sau đây là đúng :
A . Nếu đờng cao AH = 3 cm thì đờng cao AH là
3
1
cm
B . Nếu đờng trung tuyến AM = 6 cm thì đờng trung tuyến AM = 2 cm
C . Nếu chu vi ABC là 12 cm thì chu vi ABC là 4 cm.
D . Nếu diện tích ABC là 243 cm
2
thì diện tích ABC là 27 cm
2
( 1,5 điểm)
Bài 2 : Cho tam giác đều ABC; A là điểm đối xứng của A qua BC. Một cát tuyến qua A cắt cạnh AB
tại P và cắt đờng thẳng AC tại Q . Câu nào sau đây đúng ?
a)
BA
BP
CQ
CA
=
b) BC
2
= CQ . BP c) CPB QBC d) Cả a, b, c đều
đúng.
( 1,5 điểm)
Bài 3 : Cho hình chữ nhật ABCD có AB = 8 cm; BC = 6 cm . Vẽ đờng cao AH của tam giác ADB.
a) Chứng minh AHB BCD
b) Chứng minh AD
2
= DH . DB
c) Tính độ dài đoạn thẳng DH và AH ( 6 điểm)
Phòng GD - ĐT Quận Ba Đình
Trờng THCS Nguyễn Trãi
Đề kiểm tra học kỳ II năm học 2004 2005
Môn toán lớp 8
Thời gian làm bài 90 phút
Bài 1 : ( 1 điểm )
a) Phát biểu vẽ hình, ghi giả thiết và kết luận của định lí Ta-let đảo ?
b) Nêu qui tắc nhân với một số để biến đổi tơng đơng bất phơng trình ?
Bài 2 : ( 2 điểm ) Giải phơng trình và bất phơng trình sau :
a)
1
5
2
3
1
=
+
+

x
xx
b)
1
2
16
68
14
2
41
3

+

+
=

x
x
xx
c)
1
2
31
+

x

2
1
Bài 3 : ( 1,5 điểm ) Giải bài toán bằng cách lập phơng trình :
Lúc 5 giờ 45 phút một ôtô tải đi từ A đến B với vận tốc trung bình 45 km/h. Đến B ôtô nghỉ
lại 1 giờ sau đó quay về A với vận tốc trung bình 40 km/h. Ôtô về tới A lúc 11 giờ. Tính
quãng đờng AB.
Bài 4 : ( 1,5 điểm ) Khoanh tròn chữ cái đứng trớc câu trả lời đúng.
1 Các cặp phơng trình sau đây tơng đơng :
A. x + 1 = 1 và x + 3 = 3 2x B . x + 2 = 0 và x
2
4 = 0
C. x
2
+ 2 = 0 và x
2
+ 3 = 0 D . x - 1 = 1 x và 2x 1 = 2 x
2 Tập hợp nghiệm của phơng trình 3x + 4 > 2x + 3 đợc biểu diễn trên trục số
sau :
A. ( . B . . )
-1 0 0 1
C . ) . D . . (
-1 0 0 1
3 Cho ABC có AC = 4 cm ; BC = 6 cm ; = 50
0
và MNP có MN = 9 cm ;
NP = 6 cm ; N = 50
0
thì :
A. ABC không đồng dạng với MNP
B. ABC đồng đồng dạng với PMN
C. ABC đồng đồng dạng với MPN
D. ABC đồng đồng dạng với NPM
Bài 5 : ( 3 điểm )
Cho ABC, hai đờng cao AD và BE cắt nhau tại H. Từ A kẻ Ax vuông góc với cạnh AC,
từ B kẻ By vuông góc với cạnh BC, Ax cắt By tại K.
a) Tứ giác AHBK là hình gì ? Vì sao ?
b) Chứng minh BEC đồng dạng với ADC, từ đó suy ra : CD. CB = CE. CA
c) Với điều kiện nào của tam giác ABC thì C, H, K thẳng hàng.
Bài 6 : ( 1 điểm)
Cho hình hộp chữ nhật ABCD.ABCD có AB = 4 cm; AC = 5 cm và AC = 13 cm. Tính
thể tích và diện tích xung quanh của hình hộp chữ nhật đó.

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay

×

×