Tải bản đầy đủ

Dãy số Nguyễn Tài Chung

www.VNMATH.com

Mục lục
Giới hạn của các dãy số sinh bởi các đại lượng trung bình . . . . . . . . . . . . .
0.1

Giới hạn của các dãy số sinh bởi các đại lượng trung bình

2

. . . . . . . . . .

2

0.1.1

Trường hợp cùng chỉ số . . . . . . . . . . . . . . . . . . . . . . . . . .

4

0.1.2


Trường hợp lệch chỉ số . . . . . . . . . . . . . . . . . . . . . . . . . .

8

0.1.3

Phối hợp ba, bốn dãy số. . . . . . . . . . . . . . . . . . . . . . . . . .

21

1


www.VNMATH.com

Chương 0. Nguyễn Tài Chung.

GV THPT Chuyên Hùng Vương - Gia Lai.

GIỚI HẠN CỦA CÁC DÃY SỐ SINH BỞI CÁC ĐẠI LƯỢNG TRUNG BÌNH
NGUYỄN TÀI CHUNG

GV THPT Chuyên Hùng Vương, Gia Lai.
Giới hạn của các dãy số sinh bởi các đại lượng trung bình đã xuất hiện rải rác trong các kì
thi học sinh giỏi. Bài viết này nhằm trình bày một cách đầy đủ và có hệ thống các bài toán
về giới hạn của các dãy số sinh bởi các đại lượng trung bình.

0.1

Giới hạn của các dãy số sinh bởi các đại lượng trung bình

Định nghĩa 1. Ta gọi trung bình bậc r của n số dương a1, a2, . . . , an là biểu thức xác định
bởi:
∆r (a1, a2 , . . . , an ) =

ar1 + ar2 + · · · + arn
n

1

r

,

nếu r = 0, và
∆0 (a1, a2, . . . , an) := lim ∆r (a1 , a2, . . . , an )
r→0

Chú ý 1. Đặc biệt khi r = 1 ta có trung bình cộng, khi r = −1 ta có trung bình điều hòa,
khi r = 2 ta có trung bình bình phương (hay còn gọi là trung bình toàn phương).

Nhận xét 1. Ta chứng minh được nếu a1 , a2, . . . , an là những số dương khác 1 thì
∆0 (a1, a2, . . . , an) =


n

(*)

a1 a2 . . . an .

Do đó khi r = 0, ta có trung bình nhân. Còn (∗) được chứng minh như sau: Ta có
ln [∆0(a1, a2 , . . . , an )] = ln lim ∆r (a1 , a2, . . . , an )
r→0

= ln lim
r→0

ar1

+

ar2

+ ··· +
n

arn

1
r

= lim ln
r→0

ar1 + ar2 + · · · + arn
n



ar1 + ar2 + · · · + arn
ar1 + ar2 + · · · + arn
ln


 Lopitan
n
n
 = lim 
= lim 
 ar + ar + · · · + ar


r→0
r→0 
r
1
2
n
n
 r

r
r
a1 ln a1 + a2 ln a2 + · · · + an ln an

 ln (a1 a2 . . . an )
n
=
= lim 
r
r
r

a1 + a2 + · · · + an
r→0 
n
n


0.1. Giới hạn của các dãy số sinh bởi các đại lượng trung bình

1
r







2


www.VNMATH.com

Chương 0. Nguyễn Tài Chung.

GV THPT Chuyên Hùng Vương - Gia Lai.

1

= ln (a1a2 . . . an ) n .
Do đó
∆0 (a1, a2, . . . , an) =


n

a1 a2 . . . an .

Nhận xét 2. Theo nhận xét 1, trang 2 ta có ngay: Với a > 0, b > 0 thì
1

lim

m→∞

1

am + bm
2

m

=



ab.

Tuy nhiên ta có thể chứng minh sơ cấp hơn như sau (không sử dụng quy tắc Lôpitan): Ta có

1
1
1
1
1
am + bm
ln ab
= ln(ab) 2m = ln a 2m b 2m ≤ ln
m
2
1
1
1
1
am − 1 +
bm − 1 + 1
2
2
1
1
1 1
<
am − 1 +
bm − 1 .
2
2
= ln

Vậy

ln ab ≤ ln

1

1

am + bm
2

m



Từ đây, cho m → +∞ ta được
1

lim ln

m→∞

1

am + bm
2

1
1
1
m am − 1 + m bm − 1
2

m

= ln



1

ab ⇒ lim

m→∞

, ∀m = 1, 2, . . .

m

1

am + bm
2

=



ab.

Nhận xét 3. Ta chứng minh được kết quả: Dãy
∆r (a1 , a2, ..., an) =

ar1 + ar2 + · · · + arn
n

1
r

là sắp được theo r như là một hàm đồng biến của hàm số biến r ∈ R. Kết quả này rất quan

trọng, nó định hướng cho ta trong quá trình so sánh các dãy số được thành lập từ các đại
lượng trung bình.
Nhận xét 4. Đối với các dãy số được thành lập từ các đại lượng trung bình thì giới hạn của
các dãy số thường là bằng nhau và thường thì ta tìm được số hạng tổng quát của các dãy số
đó.

0.1. Giới hạn của các dãy số sinh bởi các đại lượng trung bình

3


www.VNMATH.com

Chương 0. Nguyễn Tài Chung.

0.1.1

GV THPT Chuyên Hùng Vương - Gia Lai.

Trường hợp cùng chỉ số

+∞
Bài toán 1 (Cộng cùng-nhân cùng). Cho dãy số (xn )+∞
n=1 và (yn )n=1 được xác định như

sau

xn−1 + yn−1

, yn = xn−1 yn−1 .
2
Chứng minh rằng hai dãy số đã cho có giới hạn và lim xn = lim yn .
x1 = a > 0, y1 = b > 0, xn =

n→∞

n→∞

Giải. Từ giả thiết suy ra với mọi n = 1, 2, . . . thì xn > 0, yn > 0. Theo bất đẳng thức
Cauchy ta có:
xn + yn √
≥ xn yn = yn+1 ⇒ xn ≥ yn , ∀n = 2, 3, . . .
2

xn+1 =
Suy ra

yn+1 =



xn yn ≥ yn yn = yn , ∀n = 1, 2, . . .

Vậy
yn ≥ yn−1 ≥ · · · ≥ y2 =
Tương tự ta có
xn+1 ≤ xn ≤ · · · ≤ x2 =
Vậy nên





ab.

a+b
.
2

ab ≤ y2 ≤ y3 ≤ · · · ≤ yn ≤ xn ≤ · · · ≤ x3 ≤ x2 =

Suy ra dãy số (xn ) giảm, bị chặn dưới bởi
Do đó chúng hội tụ. Đặt


a+b
ab, còn dãy (yn ) tăng và bị chặn trên bởi
.
2

lim xn = α,

n→+∞

Khi đó từ giả thiết xn+1 =

a+b
.
2

lim xn = β.

n→+∞

xn + yn
, ∀n = 1, 2, . . . cho n → +∞ ta được
2
α+β
α=
⇔ α = β.
2

Vậy hai dãy số đã cho có giới hạn và lim xn = lim xn .
n→+∞

n→+∞

Bài toán 2 (Cộng cùng-điều hòa cùng). Cho hai số dương a, b. Xét các dãy số (an )n=1
+∞

+∞

và (bn )n=1 như sau
a1 = a, b1 = b, an+1 =

a n + bn
2
, bn+1 =
, ∀n = 1, 2, ...
1
1
2
+
a n bn

Tìm lim an và lim bn .
n→∞

n→∞

0.1. Giới hạn của các dãy số sinh bởi các đại lượng trung bình

4


www.VNMATH.com

Chương 0. Nguyễn Tài Chung.

GV THPT Chuyên Hùng Vương - Gia Lai.

Giải.
Cách 1. Dễ thấy với mọi n = 1, 2, . . . , ta có
an > 0, bn > 0, bn+1 =

Vì vậy
an+1 bn+1 =

2
1
1
+
a n bn

=

2an bn
.
a n + bn

an + bn 2an bn
.
= an bn , ∀n = 1, 2, . . .
2
a n + bn

Suy ra
an bn = · · · = a1b1 = ab, ∀n = 1, 2, . . .
Ta có




a n − bn
a n − a n bn
√ =


a n + bn
a n + a n bn
an−1 + bn−1 √

− a n bn
an−1 + bn−1 − 2 an bn
2

=
=
an−1 + bn−1 √
an−1 + bn−1 + 2 an bn
+ a n bn
2

an−1 − bn−1
an−1 + bn−1 − 2 an−1 bn−1
=
= √
an−1 + bn−1 + 2 an−1 bn−1
an−1 + bn−1

2

.

Do đó, phép quy nạp theo n chứng tỏ rằng


a n − bn
√ =

a n + bn
Vậy



a n − bn
√ = lim
lim √
n→∞
an + bn n→∞

Theo trên suy ra

Đặt

Khi đó



a 1 − b1


a 1 + b1

2n−1

=


a− b


a+ b




a− b


a+ b
2n−1

=0

2n−1

, ∀n = 1, 2, . . .


a− b
√ <1 .
do √
a+ b





a n − bn
an − ab
an − ab
√ =
√ ⇒ lim
√ = 0.

n→∞ a +
a n + bn
an + ab
ab
n





an − ab
ab(xn + 1)
√ = xn ⇔ an xn + abxn = an − ab ⇔ an =
.
1 − xn
an + ab

ab(xn + 1) √
lim an = lim
= ab (do
n→+∞
n→+∞
1 − xn

0.1. Giới hạn của các dãy số sinh bởi các đại lượng trung bình

lim xn = 0).

n→+∞

5


www.VNMATH.com

Chương 0. Nguyễn Tài Chung.

GV THPT Chuyên Hùng Vương - Gia Lai.

Vậy


ab
ab
= √ = ab.
n→∞
n→∞ an
ab
Cách 2. Theo bất đẳng thức Cauchy ta có
lim bn = lim

bn+1 =

2

1
1
+
2
a n bn

2
=
1 1
.
a n bn

a n bn ≤

a n + bn
= an+1 , ∀n = 1, 2, . . .
2

Với mọi n = 2, 3, . . . ta có
a n + bn
an + an

= an ,
2
2
2an bn
≥ bn ⇔ an bn ≥ b2n ⇔ an ≥ bn (đúng).
≥ bn ⇔
a n + bn

an+1 =
bn+1
Hay ta viết lại

2ab
a+b
= b2 ≤ · · · ≤ bn ≤ bn+1 ≤ an+1 ≤ an ≤ · · · ≤ a2 =
.
a+b
2
Vậy kể từ số hạng thứ hai trở đi dãy số (an )+∞
n=1 giảm và bị chặn dưới bởi số
giới hạn, dãy số (bn )+∞
n=1 tăng và bị chặn trên bởi số

2ab
nên có
a+b

a+b
nên có giới hạn. Đặt
2

lim an = α, lim bn = β.

n→∞

Khi đó từ giả thiết an+1 =

n→∞

a n + bn
, ∀n = 1, 2, . . . cho n → +∞ ta được
2
α+β
α=
⇔ α = β.
2

Vậy hai dãy số đã cho có giới hạn và
lim an = lim bn .

n→∞

n→∞

Từ lim (an bn ) = lim (ab) = ab ta có lim an . lim bn = ab. Do đó αβ = ab, mà α = β ≥ 0
n→∞
n→∞
n→∞
n→∞

nên suy ra α = β = ab. Vậy

lim an = lim bn = ab.
n→∞

n→∞

+∞
Bài toán 3 (Nhân cùng-điều hòa cùng). Cho các dãy số (an )+∞
n=1 , (bn )n=1 xác định như

sau
a1 = a > 0, b1 = b > 0, an+1 =

2
, bn+1 =
1
1
+
a n bn

an bn (∀n = 1, 2, . . .)

Chứng minh hai dãy số đã cho có giới hạn hữu hạn và hai giới hạn đó bằng nhau.
0.1. Giới hạn của các dãy số sinh bởi các đại lượng trung bình

6


www.VNMATH.com

Chương 0. Nguyễn Tài Chung.

GV THPT Chuyên Hùng Vương - Gia Lai.

Hướng dẫn. Theo giả thiết ta có
1
an+1
Đặt

1
1
+
1
a
bn
= n
,
=
2
bn+1

1 1
. , ∀n = 1, 2, . . .
a n bn

1
1
1
1
= xn ,
= yn . Khi đó x1 = > 0, y1 = > 0 và
an
bn
a
b
xn + yn

xn+1 =
, yn+1 = xn yn , ∀n = 1, 2, . . .
2

Vậy theo bài toán 1 suy ra hai dãy (xn ), (yn ) hội tụ và lim xn = lim yn . Do đó hai dãy
n→+∞

n→+∞

(an ), (bn ) hội tụ và
lim an = lim bn .

n→+∞

n→+∞

Bài toán 4 (Trung bình bậc r cùng-nhân cùng). Cho trước ba số dương a, b và r. Xét
+∞
hai dãy số (xn )+∞
n=1 và (yn )n=1 như sau

x1 = a, y1 = b, xn+1 =

1
r

xrn + ynr
2


xn yn .

, yn+1 =

Chứng minh rằng hai dãy số đã cho hội tụ và lim xn = lim yn .
n→∞

n→∞

Giải. Từ giả thiết suy ra với mọi n = 1, 2, . . . thì xn > 0, yn > 0. Theo bất đẳng thức
Cauchy ta có:
xn+1 =

xrn + ynr
2

Suy ra
yn+1 =

1
r



xrn .ynr

1
r

=



xn yn = yn+1 , ∀n = 1, 2, . . .



xn yn ≥ yn yn = yn , ∀n = 2, 3, . . .

Vậy
yn ≥ yn−1 ≥ · · · ≥ y2 =



ab.

Tương tự ta có
xn+1 =

xrn + ynr
2

1
r



xrn + xrn
2

1
r

= xn , ∀n = 2, 3, . . .

Suy ra
xn+1 ≤ xn ≤ · · · ≤ x2 =

a r + br
2

1
r

.

Vậy nên

ab ≤ y2 ≤ y3 ≤ · · · ≤ yn ≤ xn ≤ · · · ≤ x3 ≤ x2 =
0.1. Giới hạn của các dãy số sinh bởi các đại lượng trung bình

a r + br
2

1
r

.
7


www.VNMATH.com

Chương 0. Nguyễn Tài Chung.

GV THPT Chuyên Hùng Vương - Gia Lai.

Suy ra dãy số (xn ) giảm, bị chặn dưới bởi
1
a r + br r
. Do đó chúng hội tụ. Đặt
2



ab còn dãy (yn ) tăng và bị chặn trên bởi

lim xn = α, lim yn = β.

n→∞

1
r

xrn + ynr
2

Khi đó từ giả thiết xn+1 =

α=

n→∞

αr + β r
2

, ∀n = 1, 2, . . . cho n → +∞ ta được.

1
r

⇔ αr =

αr + β r
⇔ αr = β r ⇔ α = β.
2

Vậy hai dãy số đã cho có giới hạn và lim xn = lim yn .
n→∞

0.1.2

n→∞

Trường hợp lệch chỉ số

+∞
Bài toán 5 (Cộng cùng-cộng lệch). Cho trước a, b ∈ R. Xét hai dãy (un )+∞
n=1 và (bn )n=1

như sau:

u1 = a, v1 = b, un+1 =

un + v n
un+1 + vn
, vn+1 =
2
2

Tìm lim un , lim vn .
n→∞

n→∞

Giải. Ta có

un + v n
un + 3vn
, vn+1 =
, ∀n = 1, 2, . . .
2
4
Suy ra với mọi n = 1, 2, . . . , ta có
un+1 =

un+1 + λvn+1 =

un + v n
un + 3vn

=
2
4

1 λ
+
un +
2 4

1 3λ
+
2
4

vn .

Ta chọn λ sao cho
1 3λ
1 λ
+

+
2
4
2 4

⇔ λ2 − λ − 2 = 0 ⇔

λ = −1
λ = 2.

Vậy với λ ∈ {−1, 2}, ta có:
un+1 + λvn+1 =

1 λ
+
2 4

(un + λvn ) , ∀n = 1, 2, . . .

Đặt un + λvn = xn , suy ra
xn+1 =

1 λ
+
xn , ∀n = 1, 2, . . .
2 4

0.1. Giới hạn của các dãy số sinh bởi các đại lượng trung bình

8


www.VNMATH.com

Chương 0. Nguyễn Tài Chung.

GV THPT Chuyên Hùng Vương - Gia Lai.

Vậy dãy số (xn )+∞
n=1 tạo thành một cấp số nhân với số hạng đầu x1 = a + λb, công bội
1 λ
q = + . Do đó
2 4
n−1
1 λ
xn = (a + λb)
+
, ∀n = 1, 2, . . .
2 4
Lần lượt lấy λ = −1, λ = 2 ta được:
un − vn = (a − b) .

un + 2vn = a + 2b
Suy ra lim un = lim vn =
n→∞

n→∞

1
4n−1

1
(a + 2b) .
3


2 1
1

 un = (a + 2b) + (a − b) . . n−1
3
3 4

1
1

 vn =
a + 2b − (a − b) . n−1
3
4

Bài toán 6 (Nhân cùng-nhân lệch). Cho trước hai số dương a và b. Xét hai dãy số
(un ) , (vn ) như sau:
u1 = a, v1 = b, un+1 =



un vn , vn+1 =



un+1 vn (∀n = 1, 2, . . . )

Hãy tìm lim un và lim vn .
n→∞

n→∞

Hướng dẫn. Dễ thấy với mọi n = 1, 2, . . . ta có un > 0 và vn > 0. Gọi xn = ln un , yn =
ln vn (∀n = 1, 2, . . .). Khi đó x1 = ln a, y1 = ln b và với mọi n = 1, 2, . . . , ta có
xn+1 =

ln un + ln vn
xn + yn
ln un+1 + ln vn
xn+1 + yn
=
, yn+1 =
=
.
2
2
2
2

Theo bài tập 5 ta có
lim xn = lim yn =

n→∞

n→∞

ln a + 2 ln b
ln ab2
=
= ln ab2
3
3

1
3

.

Vì hàm số mũ liên tục nên suy ra
1

lim xn

lim un = lim vn = lim eln un = lim exn = en→∞

n→∞

n→∞

n→∞

n→∞

2 3
= eln(ab ) = ab2

1
3

.

Bài toán 7 (Điều hòa cùng-điều hòa lệch). Cho trước hai số dương a và b. Xét hai dãy
số (un ) , (vn ) như sau:
u1 = a, v1 = b, un+1 =

2
2
, vn+1 =
(∀n = 1, 2, . . . )
1
1
1
1
+
+
un v n
un+1 vn

Hãy tìm lim un và lim vn .
n→∞

n→∞

0.1. Giới hạn của các dãy số sinh bởi các đại lượng trung bình

9


www.VNMATH.com

Chương 0. Nguyễn Tài Chung.

GV THPT Chuyên Hùng Vương - Gia Lai.

Hướng dẫn. Từ giả thiết ta có
1
un+1
Vậy đặt

1
1
1
1
+
+
1
u
vn
u
vn
= n
,
= n+1
, ∀n = 1, 2, . . .
2
vn+1
2

1
1
= xn ,
= yn . Khi đó
un
vn
1
1
xn + yn
xn+1 + yn
> 0, y1 = > 0, xn+1 =
, yn+1 =
.
a
b
2
2

x1 =

Đến đây ta sử dụng kết quả bài toán 5.
Bài toán 8 (Trung bình bậc r cùng-trung bình bậc r lệch). Cho trước hai số dương
a, b và cho trước r = 0. Xét hai dãy số (un ) , (vn ) như sau:
urn + vnr
2

u1 = a, v1 = b, un+1 =

1
r

1
r

urn+1 + vnr
2

, vn+1 =

Hãy tìm lim un và lim vn .
n→∞

n→∞

Hướng dẫn. Dễ thấy rằng với mọi n = 1, 2, . . . ta có un > 0, vn > 0. Với mọi n = 1, 2, . . . ,
và với mọi λ ∈ R, ta có:
r
urn+1 + λvn+1

urn + vnr
+ vnr
+
+
+
2
=

=

2
2
2
2
r
r
r
r
u + vn
u + 3vn
1 λ
1 3λ
= n
+λ n
=
+
urn +
+
vnr .
2
4
2 4
2
4
urn

urn+1

vnr

vnr

urn

vnr

Tương tự như bài tập 5, ta chứng minh được
lim urn = lim vnr =

n→∞

n→∞

a + 2b
.
3

1

Do đó và vì hàm số f(x) = x r liên tục trên (0; +∞) nên
1

lim un = lim vn = lim

n→∞

n→∞

n→∞

(vnr ) r

=

lim

n→∞

vnr

1
r

=

a + 2b
3

1
r

.

Chú ý 2. Hàm sin hypebôlic và hàm cos hypebôlic lần lượt là hàm
sinh x =

ex − e−x
ex + e−x
, cosh x =
.
2
2

0.1. Giới hạn của các dãy số sinh bởi các đại lượng trung bình

10


www.VNMATH.com

Chương 0. Nguyễn Tài Chung.

GV THPT Chuyên Hùng Vương - Gia Lai.

Bài toán 9 (Cộng cùng-nhân lệch). Cho trước hai số dương a, b. Xét các dãy số (an )+∞
n=1
và (bn )+∞
n=1 như sau:
x1 = a, y1 = b, xn+1 =

xn + yn

, yn+1 = xn+1 yn , ∀n = 1, 2, . . .
2

Tìm lim xn , lim yn .
n→∞

n→∞

Giải.
Trường hợp 1: a = b. Khi đó an = bn = a, ∀n = 1, 2, . . . Bởi vậy
lim an = lim bn = a.

n→∞

n→∞

a
< 1. Do đó đặt
b
a
π
= cos v 0 < v <
.
b
2

Trường hợp 2: a < b. Vì 0
Ta có
a1 =
b1 =
a2 =
b2 =
a3 =
b3 =

a+b
b cos v + b
b(1 + cos v)
v
=
=
= b cos2 ,
2
2
2
2
v
v
a1b = b2 cos2 = b cos ,
2
2
v
v
v
v
b cos
1 + cos
b cos2 + b cos
2
2 =
2
2 = b cos v cos2 v ,
2
2
2
22
v
v
v
v
v
a2b1 = b cos cos2 2 b cos = b cos cos 2 ,
2
2
2
2
2
v
v
v
v
b cos cos2 2 + b cos cos 2
2
2
2
2 = b cos v cos v cos2 v ,
2
2
22
23
v
v
v
v
v
v
a3b2 = b2 cos2 cos2 2 cos2 3 = b cos cos 2 cos 3 ,
2
2
2
2
2
2

Bằng phương pháp quy nạp ta dễ dàng chứng minh được:
v
v
v
v
an = b cos cos 2 · · · cos n−1 cos2 n , ∀n = 2, 3, . . .
2
2
2
2
v
v
v
v
bn = b cos cos 2 · · · cos n−1 cos n , ∀n = 2, 3, . . .
2
2
2
2
sin 2x
Theo công thức cos x =
(với sin x = 0), ta có
2 sin x
v
v
v
sin n−2 sin n−1
sin v sin 2
sin v
2
2
bn = b
v.
v ...
v .
v =b n
v .
2 sin 2 sin 2
2 sin n−1 2 sin n
2 sin n
2
2
2
2
2
0.1. Giới hạn của các dãy số sinh bởi các đại lượng trung bình

11


www.VNMATH.com

Chương 0. Nguyễn Tài Chung.

Do đó

GV THPT Chuyên Hùng Vương - Gia Lai.

v
sin v
n
sin v
lim 2 v = b
.
lim bn = b lim
=b
v
n→∞
n→∞ n
v n→∞ sin
v
2 sin n
2
2n
sin v

Từ an = bn cos

v
ta có
2n

v
sin v
= lim bn = b
.
n
n→∞
n→∞
n→∞
n→∞
n→∞
2
v
a
a
Trường hợp 3: a > b. Vì a > b > 0 nên > 1. Gọi α là số để = cosh α, tức là
b
b
lim an = lim bn cos

v
2n

= lim bn . lim cos

a
eα + e−α
=
.
b
2
Ta có:
x

x

ex + e−x
1
e 2 + e− 2
1 + cosh x = 1 +
=
2 + ex + e−x = 2
2
2
2
x
x
x
x
x
−x


e −e
e2 + e 2 e2 − e 2
x
x
=2
.
= 2 sinh . cosh .
sinh x =
2
2
2
2
2
1
x
lim (1 + x) = e.

2

x
= 2 cosh2 .
2

x→0

Vì hàm số f(x) = ln x liên tục trên khoảng (0; +∞) nên
1
ln(1 + x)
1
= lim ln(1 + x) x = ln lim (1 + x) x = ln e = 1.
x→0
x→0
x→0
x

lim

Đặt ex − 1 = y, khi đó

ex − 1
y
1
= lim
= lim
= 1.
x→0
y→0 ln(1 + y)
y→0 ln(1 + y)
x
y
x
−x
sinh x
e −e
1
e2x − 1
lim
= lim
= lim x lim
= 1.
x→0
x→0 e x→0
x→0
x
2x
2x
ex + e−x
lim cosh x = lim
= 1.
x→0
x→0
2
lim

Ta có:
a+b
b cosh α + b
b(1 + cosh α)
α
=
=
= b cosh2 ,
2
2
2
2
α
α
b1 = a1 b = b2 cosh2 = b cosh ,
2
2
α
α
2 α
b cosh
+ b cosh
1 + cosh
α
2
2 = b cosh .
2 = b cosh α cosh2 α ,
a2 =
2
2
2
2
22
a1 =

0.1. Giới hạn của các dãy số sinh bởi các đại lượng trung bình

12


www.VNMATH.com

Chương 0. Nguyễn Tài Chung.

b2 =

a 2 b1 =

GV THPT Chuyên Hùng Vương - Gia Lai.

b2 cosh2

α
α
α
α
cosh2 2 = b cosh cosh 2 ,
2
2
2
2

Bằng phương pháp quy nạp ta dễ dàng chứng minh được:
α
α
α
α
an = b cosh . cosh 2 . . . cosh n−1 cosh2 n , ∀n = 2, 3, . . .
2
2
2
2
α
α
α
α
bn = b cosh . cosh 2 . . . cosh n−1 cosh n , ∀n = 2, 3, . . .
2
2
2
2
sinh 2x
Theo công thức cosh x =
(với sinh x = 0), ta có
2 sinh x
α
α
α
sinh n−2 sinh n−1
sinh α sinh 2
b sinh α
2
2
bn = b
α.
α ···
α .
α = n
α.
2 sinh 2 sinh 2
2 sinh n−1 2 sinh n
2 sinh n
2
2
2
2
2
Do đó

α
b sinh α
sinh α
2n = b sinh α
lim bn = lim
=b
lim
α
n→∞
n→∞ n
α n→∞ sinh α
α
2 sinh n
2
2n
α
Từ an = bn cosh n ta có
2
α
sinh α
lim an = lim bn . lim cosh n = b
.
n→∞
n→∞
n→∞
2
α
Bài toán 10 (Đề thi Ôlympic 30/04/2004). Cho hai số dương a, b không đổi thỏa mãn
a < b. Xét các dãy số (an ) và (bn ) như sau
a1 =

a+b
, b1 =
2

Tìm lim an ,
n→+∞

a1b, a2 =

a 1 + b1
, b2 =
2

a2b1 , ..., an =

an−1 + bn−1
, bn =
2

an bn−1 .

lim bn .

n→+∞

Hướng dẫn. Bài toán này là trường hợp đặc biệt của bài toán 9.
Bài toán 11 (Điều hòa cùng-nhân lệch). Cho các dãy số (an )n=1 , (bn )n=1 xác định như
+∞

sau:
a1 > 0, b1 > 0, an+1 =

2
, bn+1 =
1
1
+
a n bn

+∞

an+1 bn (∀n = 1, 2, . . .)

Tìm lim an , lim bn .
n→∞

n→∞

Giải. Từ giả thiết suy ra an > 0, bn > 0, ∀n = 1, 2, . . . Ta có
1
an+1

1
1
+
1
a
bn
= n
,
=
2
bn+1

1
an+1

.

1
, ∀n = 1, 2, . . .
bn

0.1. Giới hạn của các dãy số sinh bởi các đại lượng trung bình

13


www.VNMATH.com

Chương 0. Nguyễn Tài Chung.

Vậy đặt

GV THPT Chuyên Hùng Vương - Gia Lai.

1
1
= xn ,
= yn . Khi đó
an
bn
x1 =

1
xn + yn
1

> 0, y1 =
> 0, xn+1 =
, yn+1 = xn+1 yn .
a1
b1
2

Đến đây ta sử dụng kết quả bài toán 9.
Lưu ý. Ngoài cách giải trên ta còn có thể giải trực tiếp cũng được kết quả.
Bài toán 12 (HSG Quốc gia - 1993 - Bảng A). Cho a0 = 2, b0 = 1. Lập hai dãy số
(an ) và (bn ) với n = 0, 1, 2, . . . theo quy tắc sau
an+1 =

2an bn
, bn+1 =
a n + bn

an+1 bn .

Chứng minh rằng các dãy (an ) và (bn ) có cùng một giới hạn chung khi n dần tới dương vô
cực. Tìm giới hạn chung đó.
Hướng dẫn. Bài toán này chỉ là một trường hợp riêng của bài toán 11.
Bài toán 13 (Nhân cùng-cộng lệch). Cho trước hai số dương a và b. Xét hai dãy số (an )
và (bn ) như sau:

an+1 + bn
.
2
Chứng minh rằng hai dãy số đã cho có giới hạn hữu hạn và hai giới hạn đó bằng nhau.
a1 = a, b1 = b, an+1 =

an bn , bn+1 =

Giải. Bằng quy nạp, dễ dàng suy ra với mọi n ∈ N∗ ta có an > 0 và bn > 0.
Trường hợp 1. a = b. Khi đó an = a = bn , ∀n = 1, 2, . . . , suy ra
lim an = lim bn .

n→+∞

n→+∞

Trường hợp 2. a > b. Khi đó a1 > b1 . Giả sử ak > bk (với k ∈ N∗ ). Khi đó
bk <

ak bk < ak ⇒ bk < ak+1 < ak .

Suy ra
bk =

bk + bk
ak+1 + bk
a k + bk
ak + ak
<
<
<
= ak ⇒ bk < bk+1 < ak .
2
2
2
2

Do đó
bk+1 =

ak+1 + bk
ak+1 + bk+1
<
⇒ 2bk+1 < ak+1 + bk+1 ⇒ ak+1 > bk+1 .
2
2

Theo nguyên lí quy nạp suy ra
an > bn , ∀n = 1, 2, . . .
0.1. Giới hạn của các dãy số sinh bởi các đại lượng trung bình

14


www.VNMATH.com

Chương 0. Nguyễn Tài Chung.

GV THPT Chuyên Hùng Vương - Gia Lai.

Do đó
an+1 =

a n bn <



an an = an , bn+1 =

an+1 + bn
bn+1 + bn
>
⇒ bn+1 > bn .
2
2

Vậy
b = b1 < b2 < · · · < bn < bn+1 < an+1 < an < · · · < a2 < a1 = a.
Suy ra dãy (an ) giảm và bị chặn dưới bởi số b, dãy (bn ) tăng và bị chặn trên bởi số a, do đó
an+1 + bn
hai dãy số này hội tụ. Đặt lim an = x, lim bn = y. Từ bn+1 =
, ∀n = 1, 2, . . . ,
n→+∞
n→+∞
2
cho n → +∞ ta được
y=

x+y
⇔ x = y ⇒ lim an = lim bn .
n→+∞
n→+∞
2

Trường hợp 3. a < b. Khi đó a1 < b1 . Giả sử ak < bk (với k ∈ N∗ ). Khi đó
ak <

ak bk < bk ⇒ ak < ak+1 < bk .

Suy ra
bk =

bk + bk
ak+1 + bk
a k + bk
ak + ak
>
>
>
= ak ⇒ bk > bk+1 > ak .
2
2
2
2

Do đó
bk+1 =

ak+1 + bk
ak+1 + bk+1
>
⇒ 2bk+1 > ak+1 + bk+1 ⇒ ak+1 < bk+1 .
2
2

Theo nguyên lí quy nạp suy ra
an < bn , ∀n = 1, 2, . . .
Do đó
an+1 =

a n bn >



an an = an , bn+1 =

an+1 + bn
bn+1 + bn
<
⇒ bn+1 < bn .
2
2

Vậy
a = a1 < a2 < · · · < an < an+1 < bn+1 < bn < · · · < b2 < b1 = b.
Suy ra dãy (an ) tăng và bị chặn trên bởi số b, dãy (bn ) giảm và bị chặn dưới bởi số a, do đó
an+1 + bn
hai dãy số này hội tụ. Đặt lim an = x, lim bn = y. Từ bn+1 =
, ∀n = 1, 2, . . . ,
n→+∞
n→+∞
2
cho n → +∞ ta được
y=

x+y
⇔ x = y ⇒ lim an = lim bn .
n→+∞
n→+∞
2

Kết luận : Trong mọi trường hợp ta đều có hai dãy số (an ), (bn ) có giới hạn hữu hạn và
lim an = lim bn .

n→+∞

n→+∞

0.1. Giới hạn của các dãy số sinh bởi các đại lượng trung bình

15


www.VNMATH.com

Chương 0. Nguyễn Tài Chung.

GV THPT Chuyên Hùng Vương - Gia Lai.

Bài toán 14 (Điều hoà cùng-cộng lệch). Cho trước hai số dương a và b. Xét hai dãy số
(an ) và (bn ) như sau:
a1 = a, b1 = b, an+1 =

2
1
1
+
a n bn

, bn+1 =

an+1 + bn
.
2

Chứng minh rằng hai dãy số đã cho có giới hạn hữu hạn và hai giới hạn đó bằng nhau.
Giải. Bằng quy nạp, dễ dàng suy ra với mọi n ∈ N∗ ta có an > 0 và bn > 0.
Trường hợp 1. a = b. Khi đó an = a = bn , ∀n = 1, 2, . . . , suy ra
lim an = lim bn .

n→+∞

n→+∞

Trường hợp 2. a > b. Khi đó a1 > b1 . Giả sử ak > bk (với k ∈ N∗ ). Khi đó
1
1
2
1
1
2
<

<
+
< .
ak
bk
ak
a k bk
bk

Suy ra
bk <

2
1
1
+
a k bk

< ak ⇒ bk < ak+1 < ak .

Do đó

ak+1 + bk
ak+1 + ak+1
<
⇒ bk+1 < ak+1 .
2
2
1
1
1
1
Theo nguyên lí quy nạp toán học suy ra an > bn , ∀n = 1, 2, . . . Vậy
+
>
+ . Do
a n bn
an an
đó
bk+1 =

an+1 =

2
1
1
+
a n bn

<

2
1
1
+
an an

= an , bn+1 =

an+1 + bn
bn+1 + bn
>
⇒ bn+1 > bn .
2
2

Ta viết lại
b = b1 < b2 < · · · < bn < bn+1 < an+1 < an < · · · < a2 < a1 = a.
Suy ra dãy (an ) giảm và bị chặn dưới bởi số b, dãy (bn ) tăng và bị chặn trên bởi số a, do đó
an+1 + bn
hai dãy số này hội tụ. Đặt lim an = x, lim bn = y. Từ bn+1 =
, ∀n = 1, 2, . . . ,
n→+∞
n→+∞
2
cho n → +∞ ta được
y=

x+y
⇔ x = y ⇒ lim an = lim bn .
n→+∞
n→+∞
2

Trường hợp 3. a < b. Khi đó a1 < b1 . Giả sử ak < bk (với k ∈ N∗ ). Khi đó
1
1
2
1
1
2
>

<
+
< .
ak
bk
bk
a k bk
ak

0.1. Giới hạn của các dãy số sinh bởi các đại lượng trung bình

16


www.VNMATH.com

Chương 0. Nguyễn Tài Chung.

GV THPT Chuyên Hùng Vương - Gia Lai.

Suy ra
ak <

2
< bk ⇒ ak < ak+1 < bk .
1
1
+
a k bk

Vậy

ak+1 + ak+1
ak+1 + bk
>
⇒ bk+1 > ak+1 .
2
2
1
1
1
1
Theo nguyên lí quy nạp toán học suy ra an < bn , ∀n = 1, 2, . . . Vậy
+
<
+ . Do
a n bn
an an
đó
bk+1 =

an+1 =

2
1
1
+
a n bn

>

2
1
1
+
an an

= an , bn+1 =

an+1 + bn
bn+1 + bn
<
⇒ bn+1 < bn .
2
2

Ta viết lại
a = a1 < a2 < · · · < an < an+1 < bn+1 < bn < · · · < b2 < b1 = b.
Suy ra dãy (an ) tăng và bị chặn trên bởi số b, dãy (bn ) giảm và bị chặn dưới bởi số a, do đó
an+1 + bn
hai dãy số này hội tụ. Đặt lim an = x, lim bn = y. Từ bn+1 =
, ∀n = 1, 2, . . . ,
n→+∞
n→+∞
2
cho n → +∞ ta được
y=

x+y
⇔ x = y ⇒ lim an = lim bn .
n→+∞
n→+∞
2

Kết luận : Trong mọi trường hợp ta đều có hai dãy số (an ), (bn ) có giới hạn hữu hạn và
lim an = lim bn .

n→+∞

n→+∞

Bài toán 15 (Cộng cùng-điều hoà lệch). Cho trước hai số dương a và b. Xét hai dãy số
(an ) và (bn ) như sau:
a1 = a, b1 = b, an+1 =

a n + bn
, bn+1 =
2

2
1
an+1

1
+
bn

.

Chứng minh rằng hai dãy số đã cho có giới hạn hữu hạn và hai giới hạn đó bằng nhau.
Hướng dẫn. Đặt

1
1
= xn ,
= yn . Ta đươc
an
bn
xn+1 =

2
xn+1 + yn
, yn+1 =
.
1
1
2
+
xn yn

Sau đó sử dụng kết quả bài toán 14
0.1. Giới hạn của các dãy số sinh bởi các đại lượng trung bình

17


www.VNMATH.com

Chương 0. Nguyễn Tài Chung.

GV THPT Chuyên Hùng Vương - Gia Lai.

Bài toán 16 (Nhân cùng-điều hoà lệch). Cho trước hai số dương a và b. Xét hai dãy
số (an ) và (bn ) như sau:
a1 = a, b1 = b, an+1 =

an bn , bn+1 =

2
1
an+1

1
+
an

.

Chứng minh rằng hai dãy số đã cho có giới hạn hữu hạn và hai giới hạn đó bằng nhau.
Hướng dẫn. Đặt

1
1
= xn ,
= yn . Ta đươc
an
bn
xn+1 =


xn+1 + yn
.
xn yn , yn+1 =
2

Sau đó sử dụng kết quả bài toán 13
Bài toán 17 (Trung bình bậc r cùng-nhân lệch). Cho r = 0, a > 0, b > 0, xét các dãy
+∞
số (an )+∞
n=0 và (bn )n=0 như sau:

a0 = a, b0 = b, an+1 =

arn + brn
2

1
r

an+1 bn (∀n = 0, 1, 2, . . .) .

, bn+1 =

Tìm lim an và lim bn .
n→+∞

n→+∞

Giải.
Trường hợp 1: r > 0.
Trường hợp 1.1: a = b. Khi đó an = a = bn , ∀n ∈ N. Suy ra
lim an = lim bn = 1.

n→∞

n→∞

Trường hợp 1.2: a < b. Khi đó
a r < br ⇒ 0 <
Do đó đặt

ar
= cos v
br

ar
< 1.
br

0
π
.
2

Ta có
a r + br
br cos v + br
br (1 + cos v)
v
=
=
= br cos2 ,
2
2
2
2
r
r
r
1 v
v
2 v
br1 =
a1 b =
b2 cos r
= b cos r
= br cos ,
2
2
2
v
v
v
v
br cos2 + br cos
br cos
1 + cos
r
2
2
2
2 = br cos v cos2 v ,
a2 =
=
2
2
2
22
ar1 =

0.1. Giới hạn của các dãy số sinh bởi các đại lượng trung bình

18


www.VNMATH.com

Chương 0. Nguyễn Tài Chung.

GV THPT Chuyên Hùng Vương - Gia Lai.
r

v
v
v
2 v
= a 2 b1 =
cos
cos r 2
= br cos cos 2 ,
2
2
2
2
v
v
v
v
br cos cos2 2 + br cos cos 2
r
2
2
2
2 = br cos v cos v cos2 v ,
a3 =
2
2
22
23
v
v
v
b3 = a3 b2 = br cos cos 2 cos 3 .
2
2
2

br2

2
r

b2

Bằng phương pháp quy nạp ta dễ dàng chứng minh được:
v
v
v
v
arn = br cos cos 2 · · · cos n−1 cos2 n , ∀n = 2, 3, . . .
2
2
2
2
v
v
v
v
r
r
bn = b cos cos 2 · · · cos n−1 cos n , ∀n = 2, 3, . . .
2
2
2
2
sin 2x
Theo công thức cos x =
(với sin x = 0), ta có
2 sin x
v
v
v
sin
sin
sin
sin v
2 ···
2n−2 .
2n−1 = br sin v .
brn = br
v.
v
v
v
v
2 sin 2 sin 2
2 sin n−1 2 sin n
2n sin n
2
2
2
2
2
Do đó

v
sin v
n
sin v
r sin v
lim brn = br lim
lim 2 v = br
v = b v n→∞
n→∞
n→∞ n
v
2 sin n
sin n
2
2

Từ arn = brn cos

v
ta có
2n

lim arn = lim brn cos

n→∞

n→∞

v
2n

= lim brn . lim cos
n→∞

n→∞

Do đó

v
sin v
= lim brn = br
.
n
n→∞
2
v
1

sin v r
lim an = lim bn = b
.
n→∞
n→∞
v
ar
Trường hợp 1.3: a > b > 0. Khi đó r > 1. Gọi α là số để
b
ar
= cosh α.
br
Ta có
a r + br
br cosh α + br
br (1 + cosh α)
α
=
=
= br cosh2 ,
2
2
2
2
r
r
2 α
α
br1 =
a1 b =
b2 cosh r
= br cosh ,
2
2
α
α
α
br cosh2 + br cosh
1 + cosh
α
2
2 = br cosh .
2 = br cosh α cosh2 α ,
ar2 =
2
2
2
2
22

ar1 =

0.1. Giới hạn của các dãy số sinh bởi các đại lượng trung bình

19


www.VNMATH.com

Chương 0. Nguyễn Tài Chung.

br2

=

b2

GV THPT Chuyên Hùng Vương - Gia Lai.

2 α
α
cosh
cosh r 2
2
2
2
r

r

= br cosh

α
α
cosh 2 ,
2
2

Bằng phương pháp quy nạp ta dễ dàng chứng minh được:
α
α
α
α
arn = br cosh . cosh 2 . . . cosh n−1 cosh2 n , ∀n = 2, 3, . . .
2
2
2
2
α
α
α
α
r
r
bn = b cosh . cosh 2 . . . cosh n−1 cosh n , ∀n = 2, 3, . . .
2
2
2
2
sinh 2x
(với sinh x = 0), ta có
2 sinh x
α
α
α
sinh
sinh n−2 sinh n−1
sinh
α
br sinh α
2 ···
2
2
.
.
=
brn = br
α
α
α
α
α.
2 sinh 2 sinh 2
2 sinh n−1 2 sinh n
2n sinh n
2
2
2
2
2

Theo công thức cosh x =

Do đó

α
r
b
sinh
α
sinh
α
2n = br sinh α .
lim brn = lim
= br
lim
α
n→∞
n→∞ n
α n→∞ sinh α
α
2 sinh n
2
2n
α
Từ arn = brn cosh n ta có
2
lim arn = lim brn . lim cosh

n→∞

n→∞

n→∞

α
sinh α
= br
.
n
2
α

Bởi vậy
lim an = lim bn = b

n→∞

n→∞

sinhα
α

1
r

.

Trường hợp 2: r < 0.
Trường hợp 2.1: a = b. Khi đó an = a = bn , ∀n ∈ N. Suy ra
lim an = lim bn = 1.

n→∞

n→∞

Trường hợp 2.2: a > b. Khi đó
a r < br ⇒ 0 <

ar
< 1.
br

Do đó đặt

ar
π
= cos v 0 < v <
.
r
b
2
Tương tự như trường hợp 1.2, ta chứng minh được
sin v
lim an = lim bn = b
n→∞
n→∞
v
0.1. Giới hạn của các dãy số sinh bởi các đại lượng trung bình

1
r

.
20


www.VNMATH.com

Chương 0. Nguyễn Tài Chung.

GV THPT Chuyên Hùng Vương - Gia Lai.

ar
ar
Trường hợp 2.3: a < b. Khi đó r > 1. Gọi α là số để r = cosh α. Tương tự như trường
b
b
hợp 1.3, ta chứng minh được
lim an = lim bn = b

n→∞

n→∞

sinhα
α

1
r

.

Lưu ý. Bài toán 9 là trường hợp riêng của bài toán 17 khi r = 1. Bài toán 11 là trường
hợp riêng của bài toán 17 khi r = −1. Bài toán 13 có thể xem là bổ sung cho trường hợp
r = 0 chưa được xét ở bài toán 17.
0.1.3

Phối hợp ba, bốn dãy số.

+∞
+∞
Bài toán 18. Cho ba số thực a, b, c. Xét 3 dãy số (xn )+∞
n=1 , (yn )n=1 , (zn )n=1 như sau:

x1 = a, y1 = b, z1 = c,
yn + z n
zn + xn
xn + yn
, yn+1 =
, zn+1 =
, ∀n = 1, 2, . . .
2
2
2
Chứng minh rằng các dãy số này hội tụ và tính giới hạn của chúng.
xn+1 =

Giải. Với mọi n = 2, 3, . . . Ta có
xn + yn + z n =

yn−1 + zn−1 zn−1 + xn−1 xn−1 + yn−1
+
+
= xn−1 + yn−1 + zn−1 .
2
2
2

Sử dụng liên tiếp các kết quả trên ta thu được:
xn + yn + zn = xn−1 + yn−1 + zn−1 = · · · = x1 + y1 + z1 = a + b + c.

(1)

Đặt M = a + b + c, khi đó từ (1) ta có
zn−1 + xn−1 xn−1 + yn−1
xn−1 + yn−1 + zn−1 xn−1
+
=
+
2
2
2
2
a + b + c xn−1
M
xn−1
=
+
=
+
, ∀n = 2, 3, . . .
2
2
2
2

yn + z n =

Suy ra

1
1
xn = M − (yn + zn ) = M − xn−1 , ∀n = 2, 3, . . .
2
2
Sử dụng liên tiếp các kết quả trên ta thu được:
M
xn−1
M

=

2
2
2
1
1
1
=M
− 2 + 2
2 2
2

xn =

1 M
xn−2
1
1
1

=M
− 2 + 2 xn−2
2 2
2
2 2
2
M
xn−3
1
1
1
1

=M
− 2 + 3 − 3 xn−3
2
2
2 2
2
2

0.1. Giới hạn của các dãy số sinh bởi các đại lượng trung bình

21


www.VNMATH.com

Chương 0. Nguyễn Tài Chung.

GV THPT Chuyên Hùng Vương - Gia Lai.

1
1
1
1
1
− 2 + 3 − · · · + (−1)n−1 n−1 + (−1)n n−1 x1
2 2
2
2
2
1
M 1 + 2n−1
(−1)n
M
1
(−1)n
=
.
+ n−1 x1 =
1 + n−1 + n−1 a, ∀n = 2, 3, . . .
1
2
2
3
2
2
1+
2

= ··· = M

Ta có
lim

n→+∞

1
2n−1

= 0,

lim

n→+∞

Do đó
lim xn = lim

n→∞

n→∞

(−1)n
1
(−1)n
=
lim
=
0

lim
= 0.
n→+∞ 2n−1
n→+∞ 2n−1
2n−1

M
3

1+

1
2n−1

+

(−1)n
M
a+b+c
a =
=
.
n−1
2
3
3

Tương tự ta chứng minh được
lim yn = lim zn =

n→∞

n→∞

a+b+c
.
3

Cách khác. Ta có
xn − yn =

yn−1 + zn−1 zn−1 + xn−1
1

= − (xn−1 − yn−1 ) , ∀n ≥ 2.
2
2
2

Do đó
xn − yn =



1
2

n−1

(a − b) ⇒ lim (xn − yn ) = 0.
n→∞

Tương tự ta chứng minh được
lim (yn − zn ) = 0,

n→∞

lim (zn − xn ) = 0.

n→∞

Ta có
a+b+c
xn−1 + yn−1 + zn−1
= xn −
3
3
yn−1 − xn−1 zn−1 − xn−1
=
+
6
6
1
1
≤ |xn−1 − yn−1 | + |xn−1 − zn−1 | .
6
6
a+b+c
Do đó lim xn =
. Tương tự ta chứng minh được
n→∞
3
a+b+c
a+b+c
lim yn =
, lim zn =
.
n→∞
n→∞
3
3
xn −

+∞
+∞
Bài toán 19. Cho 3 số dương a, b, c. Lập 3 dãy (un )+∞
n=1 , (vn )n=1 ,(wn )n=1 theo quy luật sau:

u1 = a, v1 = b, w1 = c và
un+1 =




vn wn , vn = wn un , wn+1 = un vn , ∀n = 1, 2, . . .

0.1. Giới hạn của các dãy số sinh bởi các đại lượng trung bình

22


www.VNMATH.com

Chương 0. Nguyễn Tài Chung.

GV THPT Chuyên Hùng Vương - Gia Lai.

Tìm lim un , lim vn , lim wn .
n→∞

n→∞

n→∞

Hướng dẫn.
Cách 1. Giải trực tiếp, tương tự như bài toán 18.
Cách 2. Dễ thấy với mọi n = 1, 2, . . . thì un > 0, vn > 0, wn > 0. Do đó từ giả thiết ta có
ln un+1 =

ln wn + ln un
ln un + ln vn
ln vn + ln wn
, ln vn+1 =
, ln wn+1 =
.
2
2
2

Gọi xn = ln un , yn = ln vn , zn = ln wn . Khi đó
x1 = ln a, y1 = ln b, z1 = ln c,
yn + z n
zn + xn
xn + yn
, yn+1 =
, zn+1 =
, ∀n = 1, 2, . . .
2
2
2
Đến đây ta sử dụng bài toán 18.
xn+1 =

+∞
+∞
Bài toán 20. Cho 3 số dương a, b, c. Lập dãy (un )+∞
n=1 , (vn )n=1 ,(wn )n=1 theo quy luật sau:

u1 = a, v1 = b, w1 = c và
un+1 =

2vn wn
2wn un
2un vn
, vn+1 =
, wn+1 =
(n = 1, 2, . . .) .
v n + wn
wn + u n
un + v n

Tìm lim un , lim vn , lim wn .
n→∞

n→∞

Hướng dẫn. Đặt

n→∞

1
1
1
= xn ,
= yn ,
= zn . Khi đó
un
vn
wn

1
x 1 = , y1 =
a
yn + z n
zn + xn
xn+1 =
, yn+1 =
,
2
2
Đến đây ta sử dụng bài toán 18.

1
1
, z1 = ,
b
c
xn + yn
zn+1 =
, ∀n = 1, 2, . . .
2

+∞
+∞
Bài toán 21. Cho ba số dương a, b, c và cho r = 0. Xét ba dãy số (xn )+∞
n=1 , (yn )n=1 , (zn )n=1

như sau: x1 = a, y1 = b, z1 = c và với mọi n = 1, 2, . . . thì
xn+1 =

ynr + znr
2

1
r

, yn+1 =

znr + xrn
2

1
r

, zn+1 =

xrn + ynr
2

1
r

Chứng minh rằng các dãy số này hội tụ và tính giới hạn của chúng.
Giải. Dễ thấy với mọi n = 1, 2, . . . thì xn > 0, yn > 0, zn > 0. Gọi Gọi M = ar + br + cr .
Khi đó với mọi n = 1, 2, . . . , ta có
r
r
xrn+1 + yn+1
+ zn+1
= xrn + ynr + znr = · · · = xr1 + y1r + z1r = ar + br + cr = M.

0.1. Giới hạn của các dãy số sinh bởi các đại lượng trung bình

23


www.VNMATH.com

Chương 0. Nguyễn Tài Chung.

GV THPT Chuyên Hùng Vương - Gia Lai.

Do đó
znr + xrn xrn + ynr
1
xr
M
xr
+
= (xrn + ynr + znr ) + n =
+ n
2
2
2
2
2
2
r
r
x
x
M
M
⇒ M − xrn+1 =
+ n ⇒ xrn+1 = − n + .
2
2
2
2

r
r
yn+1
+ zn+1
=

Đặt xrn = gn . Khi đó

1
M
gn+1 = − gn + , ∀n = 1, 2, . . .
2
2
Bởi vậy bằng quy nạp ta chứng minh được:

M
Do đó lim gn =
. Suy ra lim xn =
n→∞
n→∞
3

n

1

2

M
− ar
gn = 2
3

M
3

+

1
r

. Tương tự ta chứng minh được:

lim yn = lim zn =

n→∞

M
, ∀n = 1, 2, . . .
3

n→∞

M
3

1
r

Vậy
lim xn = lim yn = lim zn =

n→∞

n→∞

n→∞

a r + b r + cr
3

1
r

.

Nhận xét 5. Các bài toán 18, 19 là trường riêng của bài toán 21 này ứng với r = 1,
r = −1. Bài toán 20 cũng có thể xem là bổ sung cho trường hợp r = 0 không được xét ở bài
tập 21.

Bài toán 22. Cho bốn số thực a, b, c, d. Lập bốn dãy số (xn )n=1 , (yn )n=1 , (zn )n=1 , (gn )n=1
+∞

+∞

+∞

+∞

theo quy luật sau: x1 = a, y1 = b, z1 = c, g1 = d và
yn + zn + gn
zn + gn + xn
, yn+1 =
, ∀n = 1, 2, . . .
3
3
gn + xn + yn
xn + yn + z n
=
, gn+1 =
, ∀n = 1, 2, . . .
3
3

xn+1 =
zn+1
Tìm

lim xn , lim yn , lim zn , lim gn .

n→∞

n→∞

n→∞

n→∞

Giải. Với mọi n = 2, 3, . . . Ta có
yn−1 + zn−1 + gn−1 zn−1 + gn−1 + xn−1
+
3
3
gn−1 + xn−1 + yn−1 +xn−1 + yn−1 + zn−1
+
+
3
3
= xn−1 + yn−1 + zn−1 + gn−1 .

xn + yn + zn + gn =

0.1. Giới hạn của các dãy số sinh bởi các đại lượng trung bình

24


www.VNMATH.com

Chương 0. Nguyễn Tài Chung.

GV THPT Chuyên Hùng Vương - Gia Lai.

Sử dụng liên tiếp các kết quả trên ta thu được:
xn + yn + zn + gn = xn−1 + yn−1 + zn−1 + gn−1 = · · · = a + b + c + d.

(1)

Đặt M = a + b + c + d, khi đó từ (1) ta có
zn−1 + gn−1 + xn−1 gn−1 + xn−1 + yn−1
+
3
3
xn−1 + yn−1 + zn−1
2(a + b + c + d) xn−1
+
=
+
3
3
3
2M
xn−1
=
+
, ∀n = 2, 3, . . .
3
3

yn + zn + gn =

Suy ra

1
1
xn = M − (yn + zn + gn ) = M − xn−1 , ∀n = 2, 3, . . .
3
3
Sử dụng liên tiếp các kết quả trên ta thu được:
M
xn−1
M
1 M
xn−2
1
1
1

=


=M
− 2 + 2 xn−2
3
3
3
3 3
3
3 3
3
1
1
1 M
xn−3
1
1
1
1
− 2 + 2

=M
− 2 + 3 − 3 xn−3
=M
3 3
3
3
3
3 3
3
3
1
1
1
1
1
= ··· = M
− 2 + 3 − · · · + (−1)n−1 n−1 + (−1)n n−1 x1
3 3
3
3
3
1
M 1 + 3n−1
(−1)n
M
1
(−1)n
=
+ n−1 x1 =
.
1 + n−1 + n−1 a, ∀n = 2, 3, . . .
1
3
3
4
3
3
1+
3

xn =

Ta có
lim

n→+∞

1
3n−1

= 0,

n→+∞

Do đó
lim xn = lim

n→∞

lim

n→∞

M
4

(−1)n
1
(−1)n
=
lim
=
0

lim
= 0.
n→+∞ 3n−1
n→+∞ 3n−1
3n−1
1+

1
3n−1

+

(−1)n
M
a+b+c+d
a =
=
.
n−1
3
4
4

Tương tự ta chứng minh được
lim yn = lim zn = lim gn =

n→∞

n→∞

n→∞

a+b+c+d
.
4

+∞
+∞
+∞
Bài toán 23. Cho a, b, c, d ∈ (0; +∞). Lập bốn dãy số (un )+∞
n=1 , (vn )n=1 , (wn )n=1 , (tn )n=1

theo quy luật sau: u1 = a, v1 = b, w1 = c, t1 = d và
un+1 =





3
vn wn tn , vn+1 = 3 wn tn un , wn+1 = 3 tn un vn , tn+1 = 3 un vn wn

Chứng minh các dãy số này hội tụ và tìm giới hạn của chúng.
0.1. Giới hạn của các dãy số sinh bởi các đại lượng trung bình

25


Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay

×