Tải bản đầy đủ

Phương trình vô tỷ ôn thi đại học 2014

.k2
pi.
n

www.k2pi.net

et

DIỄN ĐÀN TOÁN THPT

ww
w

PHƯƠNG TRÌNH VÔ TỶ ÔN THI
ĐẠI HỌC 2014

Hà Nội, tháng 1 năm 2014

http://toanlihoasinh.blogspot.com/



Lời nói đầu

1 Tuyển tập các bài toán

et
.k2
pi.
n

Mục lục

3

4

Từ câu 1 đến câu 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4

1.2

Từ câu 21 đến câu 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

1.3

Từ câu 41 đến câu 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

1.4

Từ câu 61 đến câu 80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

38

1.5

Từ câu 81 đến câu 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


47

1.6

Từ câu 101 đến câu 120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

56

1.7

Từ câu 121 đến câu 140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

66

1.8

Từ câu 141 đến câu 160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

76

ww
w

1.1

1.9

Từ câu 161 đến câu 180 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

86

1.10 Từ câu 181 đến câu 200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

95

1.11 Từ câu 201 đến câu 220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
1.12 Từ câu 221 đến câu 240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
1.13 Từ câu 241 đến câu 260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
1.14 Từ câu 261 đến câu 282 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

2 Bài tập tự luyện

www.k2pi.net

http://toanlihoasinh.blogspot.com/

144

Trang 2


et
.k2
pi.
n

Lời nói đầu

Phương trình vô tỷ là dạng toán thường xuất hiện trong đề thi tuyển sinh Đại học Cao đẳng. Dù nhiều khi
nó không trực tiếp xuất hiện mà ẩn đằng sau những hệ phương trình, bất phương trình. Đây là câu phân loại
học sinh rất tốt.

Ta cũng biết rằng với sự sáng tạo không ngừng của những người học toán. Phương trình vô tỷ xuất hiện rất
nhiều trên các diễn đàn, trên Google với những hình thức, ý tưởng mới mẻ và đặc sắc

Topic Phương trình vô tỷ ôn thi Đại học 2014 do anh Phạm Kim Chung lập ra nhằm là nơi trao đổi,
thảo luận các bài toán phương trình vô tỷ phục vụ cho việc ôn thi Đại học. Nó đã rất thành công khi rất nhiều
bài toán đặc sắc được đưa ra thảo luận. Xin cảm ơn các thành viên đã tham gia thảo luận, đã đưa ra những bài
toán đặc sắc cùng những lời giải ấn tượng

Bản tổng hợp chia làm 2 phần chính, phần 1 là tuyển tập các bài toán cùng những lời giải, phần 2 là những
bài tập rèn luyện cho bạn đọc. Bố cục của bản tuyển tập được trình bày rất công phu và khiến chúng ta cảm
tưởng như đọc một cuốn sách vậy. Bạn đọc hoàn toàn có thể kích vào đường dẫn trong Mục lục để nhảy đến

ww
w

nơi cần xem. Quá thuận lợi phải không ?

Tuyển tập được hoàn thành và ra mắt vào những này cuối tháng 1 năm 2014, tức là những ngày cuối của
năm Quý Tỵ. Năm mới, năm Giáp Ngọ đang đến rất gần. Xin mạn phép thay mặt BQT diễn đàn k2pi, chúc
anh chị em trên diễn đàn cùng bạn đọc một năm mới an khang thịnh vượng, vạn sự như ý, cùng đón một cái Tết
thật ấm áp bên gia đình.

Người tổng hợp

Nguyễn Minh Tuấn (Popeye)

Sinh viên K62CLC Khoa Toán Tin - Đại Học Sư Phạm Hà Nội

www.k2pi.net

http://toanlihoasinh.blogspot.com/

Trang 3


et
.k2
pi.
n

Chương 1

Tuyển tập các bài toán
1.1

Từ câu 1 đến câu 20

♥ Bài 1 ♥
Giải phương trình sau :

2x − 3 + √

Lời giải

3x − 1
=0
3 − 2x2 + 2 − x

3
3
≤x≤
.
2
2
Có dạng phân thức thử nghĩ đến nhân liên hợp xem sao?
Điều kiện −

Phương trình được viết lại dưới dạng
(3x − 1)
2x − 3 +



−3x2 + 4x − 1

= 0 ⇔ 2x − 3 +

3 − 2x2 − 2x2 + 6x − 5 = 0 ⇔

3 − 2x2 + x − 2
=0
1−x

3 − 2x2 = 2x2 − 6x + 5

ww
w





3 − 2x2 − 2 + x

Nhẩm được nghiệm x0 = 1 nên ta cứ bình phương phương trình một cách bình thường


 2x2 − 6x + 5 ≥ 0
 2x2 − 6x + 5 ≥ 0


⇔x=1
 4x4 − 24x3 + 58x2 − 60x + 22 = 0
 (x − 1)2 4x2 − 16x + 22 = 0
Đối chiếu thấy nghiệm thỏa mãn.

Vậy phương trình có nghiệm duy nhất x = 1.

Lời 
giải
 3 − 2x2 ≥ 0
Đk:
 3 − 2x2 = 2 − x

⇔−

3
≤x≤
2

3
2

Nhận thấy

+ Nếu biến đổi tương đương ( quy đồng mẫu rồi bình phương ta sẽ thu được phương trình bậc cao, và khá dài.
www.k2pi.net

http://toanlihoasinh.blogspot.com/

Trang 4


5

1.1 Từ câu 1 đến câu 20
Vậy ta hãy nghĩ đến cách khác)

et

+ Nếu đạt ẩn phụ, trong phương trình không có các nhóm số hạng giống hoặc biểu diễn qua nhau dẽ dàng vậy
phương án này cũng không đặt nhiều hy vọng.

+ Do chứa mẫu có căn và nhìn khá phức tạp, ta thử nghĩ đến việc nhân liên hợp để làm đơn giản cái mẫu, cụ

.k2
pi.
n

thể như sau (và thấy mọi chuyễn dường như dễ thở )
3
3
nên ta có:
;
Do 3 − 2x2 > x − 2 với mọi x ∈ −
2
2

(3x − 1)
3 − 2x2 − 2 + x
pt ⇔ 3 − 2x =
3−√
2x2 − x2 + 4x − 4
3 − 2x2 − 2 + x
(3x − 1)
⇔ 3 − 2x =
(3x − 1) (1 − x)
2
⇔ 2x − 6x + 5 = 3 − 2x2

Đến đây hơi bí, đầu tiên ta thử bình phương xem sao. ( Nếu không được có thể nghĩ đến việc đặt ẩn phụ đưa về
hệ đối xứng loại II, phân tích các vế thành một bình phương....)

Bình
 phương ta được:

 2x2 − 6x + 5 ≥ 0
 2x2 − 6x + 5 ≥ 0


⇔x=1
 4x4 − 24x3 + 58x2 − 60x + 22 = 0
 (x − 1)2 4x2 − 16x + 22x = 0
Kết hợp điều kiện bài toán ta có x = 1 là nghiệm của phương trình.

♥ Bài 2 ♥
Giải phương trình sau :


(2x − 5) 2x + 3 =

Lời giải

2
x+1
3

2
x−1
3

ww
w

5
Đk căn có nghĩa và 2 vế cùng dấu là x ≥ .
2
Khi đó : P t ⇔ 2x − 5 =

1
3

(2x + 3)

2
x−1
3

⇔ 104x2 − 540x + 684 = 0 ⇔ x = 3(n)V x =

⇔ (2x − 5)2 =

1
4x2 − 9
27

57
(l).
26

Vậy Pt có 1 nghiệm x = 3.

♥ Bài 3 ♥
Giải phương trình sau :

17x + 1

= 2x − 3
3 − 2x2 + 2 − x

Lời giải

www.k2pi.net

http://toanlihoasinh.blogspot.com/

Trang 5


6

Chương 1. Tuyển tập các bài toán

Hình thức giống bài 1 nhưng ta lại không nhân liên hợp được nên cứ quy đồng xem sao?
Viết lại phương trình dưới dạng
2x2 + 10x + 7 = (2x − 3)
3 − 2x2 ⇒ 2x2 = 3 − u2 và phương trình trở thành

et

Đặt u =

3 − 2x2

3 − u2 + 10x + 7 = (2x − 3) u ⇔ u2 + (2x − 3) u − 10x − 10 = 0

.k2
pi.
n

Coi đây là phương trình bậc hai với ẩn là u và tham số là x ta được

∆u = (2x − 3)2 + 4 (10x + 10) = 4x2 − 28x + 49 = (2x − 7)2

3 − 2x + 2x − 7
= −2
 u=
2
Suy ra 
. Do u ≥ 0 nên chỉ nhận nghiệm
3 − 2x − 2x + 7
u=
= 5 − 2x
2

 x≤ 5
2
2
u = 5 − 2x ⇔ 3 − 2x = 5 − 2x ⇔
 3 − 2x2 = 4x2 − 20x + 25


(vô nghiệm). Vậy phương trình đã cho vô nghiệm.

♥ Bài 4 ♥
Giải phương trình sau :

8x2 + 3x + 4x2 + x − 2

Lời giải

Pt ⇔
x+4

2

+ 4x2 + x − 2
2





x+4=4

x + 4 + 8x2 + 2x − 8 = 0,(1)

ww
w

∆√x+4 = 4x2 + x − 6


x+4+2=0
(V N )

(1) ⇔ 


x + 4 + 4x2 + x − 4 = 0


2

x + 4 − x + 4 − 4x2 − 2x = 0, (2)
∆√x+4 = (4x + 1)2
 √
x + 4 = −2x


(2) ⇔ 

x + 4 = 2x + 1



1−



65
 x=
8

⇔ ... ⇔ 



−3 + 57
x=
8

Lời giải

ĐK: x ≥ −4



Phương trình viết thành: 2(4x2 + x − 2) + x + (4x2 + x − 2) x + 4 = 0 ⇔ (4x2 + x − 2)(2 + x + 4) + x = 0 (1)
Nếu x = 0 ta thấy không thỏa mãn pt=> x = 0 không là nghiệm
www.k2pi.net

http://toanlihoasinh.blogspot.com/

Trang 6


7

1.1 Từ câu 1 đến câu 20

♥ Bài 5 ♥
Giải phương trình sau :

.k2
pi.
n

et


x(4x2 + x − 2)

+ x = 0 ⇔ (4x2 + x − 2) = 2 − 4 + x ⇔
Xét x = 0 phương trình (1) tương đương với: −
2− x+4


( x + 4)2 − x + 4 − 4x2 − 2x = 0(2)

2
2
Đặt t = x + 4 ≥ 0 thì (2) thành:
 t − t − 4x − 2x = 0 ⇔ (t + 2x)(t + 2x − 1) = 0


2x ≥ 0

1 + 65
Với t = 2x ⇒ x + 4 = 2x ⇔
⇔x=

8
4x2 − x − 4 = 0



1 − 2x ≥ 0

5 − 73
Với t = 1 − 2x ⇒ x + 4 = 1 − 2x ⇔
⇒x=
(TMĐK)

8
4x2 − 5x − 3 = 0





Lời giải
ĐK: x ≥ 3

Phương trình đã cho tương đương với:

x−3
1

=√
2x − 1 − 1
x+3− x−3

x2 − 9 − (x − 3) =



2x − 1 − 1 ⇔

x2 − 9 −



2x − 1 − (x − 4) = 0 (1)

Nhận xét: Nhận thấy pt có nghiệm là x = 5 và x = 4 ta nghĩ đến cách tạo ra nhân tử chung là (x − 4)(x − 5) tuy
nhiên muốn tạo ra nhân tử này thì thêm bớt nó rất lẻ. Do vậy ta làm như sau:
x2 − 2x − 8
x+2
(1) ⇔ √
− (x − 4) = 0 ⇔ (x − 4)( √
− 1) = 0


2
2
x − 9 + 2x − 1
x − 9 + 2x − 1
TH1: x = 4 thỏa mãn đk bài toán=>x = 4 là một nghiệm của pt

TH2: Quy đồng ta được: x2 − 9 + 2x − 1 = x + 2(2)
Đêm (1) cộng (2) ta được:

x2 − 9 = x − 1 ⇔ x2 − 9 = x2 − 2x − 1 ⇔ x = 5 (TMĐK)

ww
w

Vậy pt có 2 nghiệm là x = 4; x = 5

♥ Bài 6 ♥
Giải phương trình sau :

6x3 + 15x2 + x + 1 = 3x2 + 9x + 1

x2 − x + 1

Lời giải
Đặt u =

x2 − x + 1 khi đó phương trình trở thành
u2 − 3x2 + 9x + 1 u + 6x3 + 14x2 + 2x = 0

Coi đây là phương trình bậc hai với ẩn là u và tham số là x ta được
∆u = 3x2 + 9x + 1

2

− 4 6x3 + 14x2 + 2x = 3x2 + 5x + 1

2

3x2 + 9x + 1 + 3x2 + 5x + 1
u
=
= 3x2 + 7x + 1

2
Suy ra 
.
3x2 + 9x + 1 − 3x2 − 5x − 1
u=
= 2x
2


www.k2pi.net

http://toanlihoasinh.blogspot.com/

Trang 7


Chương 1. Tuyển tập các bài toán


 x≥0
−1 + 13
2
Với u = 2x ⇔ x − x + 1 = 2x ⇔
⇔x=
.
 x2 − x + 1 = 4x2
6

 3x2 + 7x + 1 ≥ 0
.
Với u = 3x2 + 7x + 1 ⇔ x2 − x + 1 = 3x2 + 7x + 1 ⇔
 3x 3x3 + 14x2 + 18x + 5 = 0



 3x2 + 7x + 1 ≥ 0
x=0
√ .



5
3
+
5
2

3x + 9x + 3 = 0
 3x x +
x
=

3
2


1 + 13
3+ 5
.
Vậy phương trình có ba nghiệm là x ∈ −
; 0; −
6
2

♥ Bài 7 ♥
Giải phương trình sau :

Lời giải
ĐK: −1 ≤ x ≤ 4

.k2
pi.
n

et

8



(x − 3) 1 + x + x 4 − x = 2x − 3

PT đã cho tương đương với:


(x − 3)( 1 + x − 1) + x( 4 − x − 1) = 0
(x − 3)x
x(x − 3)
⇔√
−√
=0
1+x+1
4−x+1
x(x − 3) = 0(1)
⇔√

1 + x + 1 = 4 − x + 1(2)
Từ (1) ta có x = 0 hoặc x = 3
3
Từ (2) ta có x =
2
Lời giải

ww
w

Đk −1 ≤ x ≤ 4

Đặt u = x + 1 ⇒ u2 = 1 + x

v= 
4 − x ⇒ v2 = 4 − x

u2 + v 2 = 5
(1)
có hệ
3
3
2
u − v − 4u + 4v = 2u − 5 (2)

từ(2) (u − v) u2 + uv + v 2 − 4 (u − v) = (u − v) (u + v)
⇐⇒ u = v ∨ u2 + uv + v 2 − 4 − u − v = 0(∗) lại có (u + v)2 = 5 + 2uv
phương trình (*) thành (u + v)2 − 2 (u + v) − 3 = 0 ⇐⇒ u + v = 3
3
khi u=v ⇐⇒ x = nhận
2
khi u = 3 − v thế (1) ta có v = 1 ∨ v = 2 ⇐⇒ x = 3 ∨ x = 0
3
vậy có 3 nghiệm x = 0, x = 3, x =
2

www.k2pi.net

http://toanlihoasinh.blogspot.com/

Trang 8


9

1.1 Từ câu 1 đến câu 20
♥ Bài 8 ♥
Giải phương trình sau :
x2 − 2x + 4 = (x − 1) x2 + 4x + 7

Lời giải


 (x + 2) (x − 1) ≥ 0

 3(x + 2)2 = 3(x − 1)2

.k2
pi.
n

Phương trình đã cho tương đương với

 (x + 2) (x − 1) ≥ 0

 (x + 2)2 x2 − 2x + 4 = (x − 1)2 x2 + 4x + 7

et

(x + 2)

Hệ phương trình cuối vô nghiệm.
Vậy phương trình vô nghiệm.
Lời giải

Thấy căn thử đặt xem sao, không ngờ nó ngon thật thầy ơi
Đặt

x2 − 2x + 4 = a;

Ta có:

x2 + 4x + 7 = b (a; b > 0)

b2 − a2 + 9
6
b2 − a2 − 9
•x − 1 =
6

•x + 2 =

Khi đó phương trình đã cho trở thành:

b2 − a2 + 9
b2 − a2 − 9
a=
b
6
6
⇔ b2 − a2 + 9 a = b2 − a2 − 9 b

ww
w

⇔ (a + b) (a − 3 − b) (a + 3 − b) = 0

•a − 3 = b ⇔

x2 − 2x + 4 =

x2 + 4x + 7 + 3

x2 + 4x + 7 = −x − 2


 x≤2
 x≤2


 x2 + 4x + 7 = x2 − 4x + 4
 7 = 4(V L)



x2 − 2x + 4 + 3 = x2 + 4x + 7

 x≥1
x2 − 2x + 4 = x − 1 ⇒
 4 = 1(V L)

•a + 3 = b ⇔


Vậy phương trình đã cho vô nghiệm

♥ Bài 9 ♥
Giải phương trình sau :

www.k2pi.net


(2 2x − 1 + x + 1)2 − 9x2 + 15 = 22x

http://toanlihoasinh.blogspot.com/

Trang 9


10

Chương 1. Tuyển tập các bài toán

1
Điều kiện x ≥ .
2
Cứ rút gọn phương trình xem ta được gì?
2x2 + 3x − 3 = (x + 1)

et

Lời giải


2x − 1

.k2
pi.
n

Nhẩm
được nghiệm x = 1 nên bình phươnghai vế ta được

 2x2 + 3x − 3 ≥ 0
 2x2 + 3x − 3 ≥ 0

⇔x=1
 2x2 + 3x − 3 2 = (x + 1)2 (2x − 1)
 (x − 1) 2x3 + 7x2 + 4x − 5 = 0
Vậy phương trình có nghiệm duy nhất x = 1.

P/s: Phương trình bậc ba chứng minh vô nghiệm trong điều kiện đó, hơi tắt chút các bạn hoàn thiện giúp mình
Lời giải
Điều kiện:

x≥

1
2

Phương trình đã cho tương đương:


2 2x − 1 + x + 1

Đặt căn tiếp nào! Đặt

Ta có:



2

= (x + 3) (9x − 5)

2x − 1 = a (a ≥ 0)

a2 + 3
2
a2 + 7
•x + 3 =
2
9a2 − 1
•9x − 5 =
2

ww
w

•x + 1 =

Khi đó phương trình đã cho trở thành:

2

a2 + 3
a2 + 7
2a +
=
2
2
2
2
2
⇔ a + 4a + 3 = a + 7

9a2 − 1
2
2
9a − 1

a=1
⇔ −8 (a − 1) a3 + 5a + 2 = 0 ⇔ 
a3 + 5a + 2 = 0

•a = 1 ⇔ 2x − 1 = 1 ⇒ 2x − 1 = 1 ⇒ x = 1
•a3 + 5a + 2 = 0

Dễ thấy a > 0 nên a3 + 5a + 2 > 0

Vậy phương trình đã cho có 1 nghiệm duy nhất x = 1

www.k2pi.net

http://toanlihoasinh.blogspot.com/

Trang 10


11

1.1 Từ câu 1 đến câu 20


x3 + 22x2 − 11x − (6x2 + 12x − 6) 2x − 1 = 0

et

♥ Bài 10 ♥
Giải phương trình sau :

Lời giải
Điều kiện:
x≥

1
2

.k2
pi.
n

Phương trình đã cho được viết lại thành:


x3 + 22x2 − 11x = (6x2 + 12x − 6) 2x − 1

Bình phương 2 vế lên xem sao Khi đó, ta được:

(x − 1)2 x2 − 18x + 9 x2 − 8x + 4 = 0


x=1
x=1



2
 x=9±6 2
⇔

x

18x
+
9
=
0



x2 − 8x + 4 = 0
x=4±2 3

Đối chiếu với điều kiện Vậy phương trình đã cho có nghiệm:

x=1


 x=9±6 2


x=4±2 3

Lời giải

ww
w

1
Điều kiện x ≥ .
2
Nhận thấy x0 = 1 là nghiệm của phương trình nên thực hiện nhân liên hợp ta được

x3 + 16x2 − 23x + 6 − 6 x2 + 2x − 1
2x − 1 − 1 = 0.
x−1
⇔ (x − 1) x2 + 17x − 6 − 6 x2 + 2x − 1 . √
= 0.
2x − 1 + 1

x=1

⇔
.
6 x2 + 2x − 1
x2 + 17 − 6 − √
= 0(1)
2x − 1 + 1
Ta giải phương trình (1). Quy đồng ta được

x2 + 17x − 6 2x − 1 = 11x2 + 7x − 6.
Tiếp tục nhân liên hợp ta được

x2 + 17x − 6
2x − 1 − 1 = 10x2 − 10x. 


x=1
2 (x − 1) x2 + 17x − 6

= 10x (x − 1) ⇔ 
.

2x − 1 + 1
10x 2x − 1 + 1 = 2 x2 + 17x − 6 (2)

Phương trình (2) tương đương với



5x 2x − 1 = x2 + 12x − 6 ⇔ x2 − 5x. 2x − 1 + 6 2x − 1
www.k2pi.net

2

= 0.

http://toanlihoasinh.blogspot.com/

Trang 11


12

Chương 1. Tuyển tập các bài toán



x=4±2 3
x = 2 2x − 1
⇔
x − 3 2x − 1 = 0 ⇔ 
√ .

x = 3 2x − 1
x=9±6 2

et


⇔ x − 2 2x − 1





Đối chiếu thấy tất cả các nghiệm đều thỏa mãn.


Vậy phương trình có 5 nghiệm x ∈ 1; 4 ± 2 3; 9 ± 6 2 .

.k2
pi.
n

♥ Bài 11 ♥
Giải phương trình sau :



Lời giải
Đk: x ≥ 1 (*)

pt ⇔ 4 x − 1 +

x+1+



4
x−1= x−1+

x2 − 2x + 3

(x − 1) + 2 = (x − 1)2 + (x − 1)2 + 2 (**)


4
Xét hàm số: f (t) = t + t + 2 ( t ≥ 0 )
1
1
+ √
f = √
> 0 với mọi t > 0
4 3
2 t+2
4 t
Vậy hàm f liên tục và đơn điệu tăng trên tập số thực t > 0
4

Ta có (**) ⇔ f (x − 1) = f (x − 1)2
⇔ x − 1 = (x − 1)2 ⇔ x = 1; x = 2

Kết hợp điều kiện (*) ta có x = 1 và x = 2 là nghiệm của phương trình.

♥ Bài 12 ♥
Giải phương trình sau :


3x2 + 33 + 3 x = 2x + 7

ww
w

Lời giải

Đặt t = x, t ≥ 0

Ta có P t :

3t4 + 33 = 2t2 − 3t + 7

⇔ 3t4 + 33 = 2t2 − 3t + 7

2

⇔ t4 − 12t3 + 37t2 − 42t + 16 = 0 ⇔ (t − 1)2 (t − 2) (t − 8) = 0

Vậy Pt có 3 nghiệm : x = 1; x = 4; x = 64.

♥ Bài 13 ♥
Giải phương trình sau :

www.k2pi.net



2 (5x − 3) x + 1 + 5 (x + 1) 3 − x = 3 (5x + 1)

http://toanlihoasinh.blogspot.com/

Trang 12


13

1.1 Từ câu 1 đến câu 20
Lời giải

et

Điều kiện −1 ≤ x ≤ 3.

.k2
pi.
n

Thấysự xuất hiện của hai căn thức nên ta đặt ẩn phụ dạng hai ẩn xem sao?
 u = √x + 1
, (0 ≤ u, v ≤ 2) thì ta có u2 + v 2 = 4.
Đặt

 v = 3−x

2
2


 5x − 3 = 3u − 2v
Đồng nhất hệ số ta phân tích được
.
x + 1 = u2



5x + 1 = 4u2 − v 2
Khi đó phương trình đã cho trở thành

2 3u2 − 2v 2 + 5uv 2 = 3 4u2 − v 2 ⇔ 6u2 (2 − u) = v 2 (u + 3)
Vậy ta có hệ phương trình


 6u2 (2 − u) = v 2 (u + 3)
 (2 − u)2 (2 + u)2 = v 4

 u2 + v 2 = 4
 36u4 (2 − u)2 = v 4 (u + 3)2




u2 + v 2 = 4

 u2 + v 2 = 4
 


v=0

 36u4 v 4 = v 4 (u + 3)2 (2 + u)2




6u2 = (u + 2) (u + 3)



⇔

u=2

5 + 145
u=
10


Với u = 2 ⇔ √ x + 1 = 2 ⇔ x = 3. √


5 + 145
5 + 145
7 + 145
Với u =
⇔ x+1=
⇔x=
.
10
10
10

7 + 145
.
Vậy phương trình có hai nghiệm là x ∈ 3;
10

ww
w

♥ Bài 14 ♥
Giải phương trình sau :



4x2 + (2x − 5) 4x + 2 + 17 = 4x + (2x + 3) 6 − 4x

Lời giải



4x2 + (2x − 5) 4x + 2 + 17 = 4x + (2x + 3) 6 − 4x(1)
−1
3
ĐK :
≤x≤ .
2
√2

(1) ⇔ (2x + 3) 6 − 4x − (2x − 5) 4x + 2 = (2x − 1)2 + 16


⇔ (2x + 3) 6 − 4x + (5 − 2x) 4x + 2 = (2x − 1)2 + 16
V T ≥ 16(∗)


2
6 − 4x + (5 − 2x) 4x + 2


2
(2x + 3) 6 − 4x + (5 − 2x) 4x + 2

V P 2 = (2x + 3)
V P 2 ≤ 2.



2

⇔ V P 2 ≤ 2 −96x2 + 96x + 104 = 2 −24(2x − 1)2 + 128 ≤ 2.128 = 256.
⇒ V P ≤ 16(∗∗)
www.k2pi.net

http://toanlihoasinh.blogspot.com/

Trang 13


14

Chương 1. Tuyển tập các bài toán
1
2

Lời giải
1
3
Điều kiện : − ≤ x ≤
2
2
Phương trình đã cho tương đương với phương trình :
16x2 − 16x + 68 = 4 (4x + 2)




6 − 4x + 4 (5 − 2x) 4x + 2

6 − 4x +



4x + 2

3

(1)

.k2
pi.
n

⇔ 16x2 − 16x + 68 =



et

Từ (*) và (**) ⇒ x =



t2 − 8
Đặt t = 6 − 4x + 4x + 2, t ≥ 0 ⇒ 16x2 − 16x = 12 −
4

2

. Lúc đó phương trình (1) trở thành :

2

t2 − 8
12 −
+ 68 = t3 ⇔ t4 + 4t3 − 16t2 − 256 = 0
4




⇔ t = 4 ⇔ 6 − 4x + 4x + 2 = 4 ⇔ 6 − 4x − 2 + 4x + 2 − 2 = 0
2 (1 − 2x)
2 (2x − 1)
⇔√
+√
=0
6 − 4x + 2
4x + 2 + 2

2x − 1 = 0
⇔ √

6 − 4x = 4x + 2
⇔x=

♥ Bài 15 ♥
Giải phương trình sau :

1
2

ww
w



(7 − 6x) 4 + 3x + (13 + 6x) 1 − 3x = 5 −9x2 − 24x − 11
Lời giải

Đầu tiên đặt: u =
2



4 + 3x; v =



1 − 3x thì:

2

u + v = 5.

P T ⇐⇒ (5 + 2v 2 )u + (5 + 2u2 )v =
⇐⇒ (u + v)3 =

u2 v 2 − 4u2 + v 2

5 − u4

⇐⇒ (5 + 2uv)3 + u4 = 5.
Điều này vô lí.

Vậy PT đã cho vô nghiệm

♥ Bài 16 ♥
Giải phương trình sau :

www.k2pi.net




3x − 7 + (4x − 7) 7 − x = 32

http://toanlihoasinh.blogspot.com/

Trang 14


15

1.1 Từ câu 1 đến câu 20
Lời giải
7
≤x≤7
3

Đặt : a = 7 − x 0 ≤ a ≤

et

Điều kiện :

14
3

Phương trình đã cho trở thành :

14 − 3a2 − 4a3 + 21a − 32 = 0

14

.k2
pi.
n

Mà :
• 0 ≤ f (a) =

14 − 3a2 ≤

14
;
3

• g (a) = −4a3 + 21a − 32, 0 ≤ a ≤
g (a) = −12a2 + 21

⇒ −32 = g (0) ≤ g (a) ≤ g



7
2


= −32 + 7 7



Nên : f (a) + g (a) ≤ −32 + 7 7 + 14 < 0
Hay phương trình đã cho VN.

♥ Bài 17 ♥
Giải phương trình sau :

4x − 1
11 − 2x
15

+ √
=
2
4x − 3
5−x

Lời giải

ww
w

4x − 1
11 − 2x
15

+ √
=
2
4x − 3
5−x


2
1
15
⇔ 4x − 3 + √
+2 5−x+ √
=
2
4x − 3
5−x


2
1
15

4x − 3 + 2 5 − x + √
+√
=
2
5−x
√4x − 3



4x − 3 + 2 5 − x
15

4x − 3 + 2 5 − x +
= .(1)
2
(4x − 3)(5 − x)
 √
 4x − 3 + 2√5 − x = a ≥ 0
 (4x − 3)(5 − x) = b ≥ 0
a2 − 17
⇒ a2 − 4b = 17. ⇒ b =
.
4
4a
15
(1) → a +
= .
−17 + a2
2
3
2
⇔ 2a − 15a − 26a + 255 = 0

⇔ (a − 5)(2a2 − 5a + 51) = 0

⇔ a = 5.
 √

19
 4x − 3 + 2√5 − x = 5
x=

4


 (4x − 3)(5 − x) = 2
x=1

www.k2pi.net

http://toanlihoasinh.blogspot.com/

Trang 15


Chương 1. Tuyển tập các bài toán

♥ Bài 18 ♥
Giải phương trình sau :
x+

x2 − 3x + 9 =

et

16

x2 + 2x + 10 + 1

Lời giải

♥ Bài 19 ♥
Giải phương trình sau :

.k2
pi.
n

Nhận
thấy x = 1 không là nghiệm của phương trình nên đưa về hệ

 x2 + 2x + 10 − x2 − 3x + 9 = x − 1
.
 x2 + 2x + 10 + x2 − 3x + 9 = 5x + 1
x−1
5x
+
1
−x2 + 7x
− (x − 1) =
.
Suy ra 2 x2 − 3x + 9 =
x−1
x−1

 (x − 1) −x2 + 7x ≥ 0
⇔ 2 (x − 1) x2 − 3x + 9 = −x2 + 7x ⇔
.
 4(x − 1)2 x2 − 3x + 9 = x2 (7 − x)2

 (x − 1) −x2 + 7x ≥ 0

⇔ x = 3.
 (x − 3) x3 + x2 + 8x − 4



Lời giải

23
1
1
+ x= √
+ 3x2 + 11
2
x−1
2x − 3

3
Điều kiện x > .
2
Nhẩm được nghiệm x0 = 2 nên thử nhân liên hợp xem sao?

ww
w

Viết lại phương trình dưới dạng



⇔√

1
1
23
−√
= 3x2 − x + 11
2
x−1
2x − 3

11
x−2


= (x − 2) 3x −
2
x − 1. 2x − 3 x − 1 + 2x − 3




⇔



x=2


1
11



= 3x − (1)
2
x − 1. 2x − 3 x − 1 + 2x − 3

Phương trình (1) dễ thấy chuyển vế ta được một hàm đơn điệu vậy cái ta cần là tìm được một nghiệm nữa của
phương trình và đó chính là x = 2.

Vậy phương trình có nghiệm duy nhất x = 2.

www.k2pi.net

http://toanlihoasinh.blogspot.com/

Trang 16


17

♥ Bài 20 ♥
Giải phương trình sau :


2−x √
= 2x − 3 − 3 x − 1
4

Lời giải

et

1.2 Từ câu 21 đến câu 40

1.2

.k2
pi.
n


2−x √
= 2x − 3 − 3 x − 1
4
3
ŒK : x ≥ .
2

x √
x−2
=0
⇔ 2x − 3 − 1 + − 3 x − 1 +
2
4
2
2x − 4
(x − 2)(x + 2x − 4) x − 2
⇔√
+
+
=0
8A
4
2x − 3 + 1
⇔x=2
x2 + 2x − 4 1
3
1
+
+ > 0; ∀x ≥
do : √
8A
4
2
2x − 3 + 1

Từ câu 21 đến câu 40

♥ Bài 21 ♥
Giải phương trình sau :

Lời giải


4x2 + 3(x2 − x) x + 1 = 2(x3 + 1)

ww
w


4x2 + 3(x2 − x) x + 1 = 2(x3 + 1)

ĐK : x ≥ −1.


⇔ 4x2 − 2x3 − 2 + 3(x2 − x) x + 1 = 0

⇔ (x − 1) 3x x + 1 − 2x2 + 2x + 2 = 0

x=1
⇔

3x x + 1 = 2x2 − 2x − 2

x=1
⇔
4x4 − 17x3 − 13x2 + 8x + 4 = 0

x=1
⇔
(x2 − 4x − 4)(4x2 − x − 1) = 0

www.k2pi.net

http://toanlihoasinh.blogspot.com/

Trang 17


18

Chương 1. Tuyển tập các bài toán

♥ Bài 22 ♥
Giải phương trình sau :
x2 + x =

3x2 + 4x + 1

et

x2 + 4x + 3 +
Lời giải
đk x ≤ −3 ∨ x ≥ 0,x = −1
Phương trình thành
x (x + 1) =

xét x = −1 thoả mãn
x ≥ 0, phương trình thành



x + 3 + x = 3x + 1

(x + 1) (3x + 1)

.k2
pi.
n

(x + 1) (x + 3) +


−8 + 76
⇐⇒ 3x + 16x − 4 = 0, x ≥ 2 ⇐⇒ x =
loại
3
TH: x ≤ −3
2

phương trình thành



−x − 3 + −x√= −3x − 1 ⇐⇒ 3x2 + 16x − 4 = 0
−8 − 76
⇐⇒ x =
3
Lời giải
Điều kiện :


2


 x + 4x + 3 ≥ 0
x2 + x ≥ 0





3x2 + 4x + 1 ≥ 0

Phương trình đã cho tương đương với :
2

(x2 + x) (x2 + 4x + 3) = x2 − x − 2

ww
w

⇔ 2 (x + 1)2 (x2 + 3x) = (x + 1) (x − 2)


 x2 − x − 2 ≥ 0
x = −1




−8 − 76
 (x + 1)2 3x2 + 16x − 4 = 0
x=
3

♥ Bài 23 ♥
Giải phương trình sau :

x−2
x+2
+ √

x−1
x+2+ x−2

2

=1

Lời giải

Nhân liên hợp cái mẫu đưa về





16 x − 2 + (x + 2)( x + 2 − x − 2)2 x − 1 = 16 x − 1
Phá tung tóe ra được







x. x − 2 x − 1. x + 2 = x − 1(x2 + 2x − 8) + x − 2(8 − 2 x − 1 x + 2)
www.k2pi.net

http://toanlihoasinh.blogspot.com/

Trang 18


19

1.2 Từ câu 21 đến câu 40

et

Trong đó x2 + 2x − 8 = (x − 2)(x + 4) nên thấy ngay x = 2 là nghiệm, cái còn lại là






x. x − 1. x + 2 = x − 1. x − 2.(x + 4) + 8 − 2 x − 1 x + 2
Cáo lỗi do nhìn nhầm nên đoạn cuối nãy mình làm sai,nhưng cái phương trình trên vẫn vô nghiệm, có thể làm

Lời giải
ĐK x ≥ 2
PT ⇔

4 x−2
x+2
x−2
3 x+2

+1

1

+
1+

x−2
x+2

x−2
, (t ≥ 0)
x+2
PT trở thành
1
2t

+
=1
2
3t + 1 (1 + t)2
2t
t2 + 2t
⇔√
=
3t2 + 1
(t + 1)2

Đặt t =

2

t2 + 2t
4t2
=
⇔ 2
3t + 1
(t + 1)4
⇔ t3 t3 + 4t2 + 11t + 12 = 0
⇔t=0

.k2
pi.
n

tạm thời như sau




(x + 2) x − 1 x + 2 = 8 + (x + 4) x − 1 x − 2 bình phương 2 vế thu gọn được


(x − 2)(3x + 13) = 4(x + 4) x − 1 x − 2, lại có nghiệm x = 2


cái còn lại x − 2(3x + 13) = 4(x + 4) x − 1 vô nghiệm do đk x ≥ 2

2

=1

Vậy PT có nghiệm duy nhất x = 2

ww
w

Lời giải

Tạm thời chưa nghĩ ra cách khác đành dùng cách trâu bò nhất
Điều kiện x ≥ 2.

Viết lại phương trình dưới dạng

x−2
+
x−1

Đặt




 u=


 v=

Mặt khác x =

1
x−2
x+2

2

=1

+1

x−2
x − 1 , (0 ≤ u, v < 1) khi đó phương trình trở thành
x−2
x+2
u+

1
=1
(v + 1)2

2 1 + v2
2 − u2
=
. Vì vậy ta có hệ phương trình
1 − u2
1 − v2

www.k2pi.net

http://toanlihoasinh.blogspot.com/

Trang 19


Chương 1. Tuyển tập các bài toán

1




u=1−
1

1
2



u=1−



(v
+
1)
=
1
 u+


(v + 1)2
2
(v + 1)2
1
2


2 − 1 − (v+1)2
2 1 + v2
2(v + 1)4 − v 2 + 2v
2 1 + v2
2 1 + v2



2 − u2



=



=
=

2

1 − v2
1 − v2
1 − u2
1 − v2
(v + 1)4 − (v 2 + 2v)2
 1− 1− 1 2
(v+1)


1

1


 u=1−
 u=1−
2
(v
+
1)
(v + 1)2
⇔u=v=0⇔x=2


2
4 + 4v 3 + 8v 2 + 8v + 2
2
1
+
v


v
6
5
4
3



v + 5v + 11v + 12v = 0
=
2v 2 + 4v + 1
1 − v2
♥ Bài 24 ♥
Giải phương trình sau :

.k2
pi.
n

et

20

5x2
x2 + x + 2

+

x+1
x2 + x + 2
Lời giải

 x2 + √x + 2
Theo BCS ta có:

 x2 + x + 3

+

2

2

≤ x2 + 1

x2 + x + 2

2

≤ x2 + 1

x2 + x + 3

x2 + x + 3

x2 + x + 3

5x2
2
5x2
2x2
Suy ra vế trái Pt : V T ≥ √
+ 2
≥√
− 2
+2
x+1 x +1
x+1 x +1


x2 5x2 − x + 3 + 1 − x + 1
x2 5x2 + 5 − 2 x + 1


⇒VT ≥
+2≥
(x2 + 1) x + 1
(x2 + 1) x + 1
⇒ V T ≥ 2 = V P.
Và : V T = V P = 2 ⇔ x = 0.

2

=2

2

+2

Vậy Pt có nghiệm duy nhất : x = 0.



(2x − 9) x + 7 + 3x − 2 + 2x + 9 = 0

ww
w

♥ Bài 25 ♥
Giải phương trình sau :

Lời giải

2
Điều kiệnx ≥ .
3
Nhẩm được nghiệm x0 = 2 nên thử liên hợp xem sao?
Phương trình được viết lại dưới dạng

(2x − 9)



x+7−3 +



3x − 2 − 2 + 8 (x − 2) = 0

2x − 9
3
+√
+8 =0
x+7+3
3x − 2 + 2
2x − 9
3
2
+√
+ 8 > 0, ∀x ≥ nên phương trình tương đương với x = 2.
Mặt khác √
3
x+7+3
3x − 2 + 2
Vậy phương trình có nghiệm duy nhất x = 2.
⇔ (x − 2) √

www.k2pi.net

http://toanlihoasinh.blogspot.com/

Trang 20


21

1.2 Từ câu 21 đến câu 40
♥ Bài 26 ♥
Giải phương trình sau :
1
x3
=x−
x
x3 + 1

et



Lời giải

 x > −1
Điều kiện :
 x=0
x4
= (x − 1) (x + 1) (*) suy ra : x > 1
x3 + 1

Lúc đó :
(∗) ⇔ x4 = x2 − 1

.k2
pi.
n

Viết lại phương trình : √

x3 + 1 ⇔ x =

1−

1
x2

x+

1
x2

1
1
> 0; b = x + 2
x2
x
PT trên trở thành :
a + b2 − 1 = ab ⇔ b2 − ab + a − 1 = 0

Đặt : a = 1 −

∆a = a2 − 4 (a − 1) = (a − 2)2

b=a−1
⇒
b=1

1
1
x + 2 = − 2 (V N )
x
x
1
• b = 1 ⇒ x + 2 = 1 (V N do x > 1)
x
Kết luận : Người đẹp vô nghiệm
• b=a−1⇒

Lời giải

ww
w

Hoặc có thể đánh giá bằng bất đẳng thức Cô si như sau
x + 1 + x2 − x + 1
V P = x2 − 1
(x + 1) (x2 − x + 1) ≤ x2 − 1 .
.
2
2
2x4 − x2 − 1 − 1 − x2
x4 + x2 − 2
=
< x4 = V T
=
2
2
Nên phương trình vô nghiệm.

♥ Bài 27 ♥
Giải phương trình sau :

1


3x − 2 x − 1. 2x − 3

Lời giải
3
Đk: ≤ x = 2
2





=
x − 1 + 2x − 3


2x − 3 − x − 1 + 2
16 (x − 2)


2x − 3 − x − 1 + 2


Pt ⇔
=
16 2x − 3 − x − 1
3x − 2 (2x − 3) (x − 1)
1

www.k2pi.net



http://toanlihoasinh.blogspot.com/

Trang 21


22

Chương 1. Tuyển tập các bài toán

Đặt :t =



2x − 3 −


1
x − 1, − √ ≤ t = 0
2


♥ Bài 28 ♥
Giải phương trình sau :

.k2
pi.
n

et

t=2





1
t+2
Ta có Pt theo t là : 2
=
⇔
t=2 2−2

t +4
16t




t = −2 2 − 2 (loi)




x = 26
2x − 3 − x − 1 = 2



Ta giải 2 Pt : 
⇔







2x − 3 − x − 1 = 2 2 − 2
x = 38 − 24 2 + 4 139 − 98 2


Vậy Pt có 2 nghiệm : x = 26; x = 38 − 24 2 + 4 139 − 98 2.

2

3 x2 + 1

Lời giải
Đk |x| ≤



2

2

Đặt a = x + 1, b =

− 15 = 8x2

2 (2 − x2 )

4 − 2x2 ⇒ a ≥ 1, b ≥ 0

ta
 có hệ

2a + b2 = 6
(1)
3a2 − 15 = 8b (a − 1) (2)

ww
w

Từ (1) thế (2): 3b4 + 16b3 − 36b2 − 64b + 48 = 0 ⇐⇒


⇐⇒ b = 1 + 37 ∨ b = −3 + 13

b = 1 + 37 loại


b = −3 + 13 ⇒ x = ± 3 13 − 9

3b2 − 2b − 12

b2 + 6b − 4 = 0

♥ Bài 29 ♥
Giải phương trình sau :

x4 − x2 + 1 +

x (x2 − x + 1) =

(x2 + 1)3
x

Lời giải

Có lẽ đề là

x4 + x2 + 1 +

(x2 + 1)3
x

x (x2 − x + 1) =

Chia 2 vế cho x ta được
PT ⇔

x2 +

1
+1+
x2

www.k2pi.net

x+

1
−1=
x

x+

1
x

3

http://toanlihoasinh.blogspot.com/

Trang 22


23

1.2 Từ câu 21 đến câu 40
Để đơn giản, ta đặt t = x +

1
(t ≥ 2)
x

⇔ t2 + t − 2 + 2


et

PT trở thành


t2 − 1 + t − 1 = t t
(t2 − 1) (t + 1) = t3

(t2 − 1) (t − 1) − 1

2

=0

⇔ t2 − 1 (t − 1) − 1 = 0

.k2
pi.
n

⇔ t t2 − t − 1 = 0 (vô nghiệm, do t ≥ 2)

Chú ý cũng có thể sử dụng ngay BĐT Bunyakovsky mà không cần bình phương


V T = 1. t2 − 1 + t − 1.1 ≤ (1 + t − 1) (t2 − 1 + 1) = t t = V P
...
Thực ra nếu đề là
thì V T (∗) <

x4 − x2 + 1 +

x4 + x2 + 1 +

♥ Bài 30 ♥
Giải phương trình sau :

x (x2 − x + 1) =

(x2 + 1)3
(∗)
x

x (x2 − x + 1) < V P (∗)



x 1 + x + (x + 2) 1 − x = x +
Lời giải



x 1 + x + (x + 2) 1 − x = x +

(1 − x) (1 + x) + 1

(1 − x) (1 + x) + 1

ĐK : −1 ≤ x ≤ 1.

ww
w



⇔ x2 + x − 1 + x + 2 − x + 1
1−x−x =0

x+2− x+1
⇔ x2 + x − 1 1 − √
=0
1−x+x

x2 + x − 1 = 0




x+2− x+1= 1−x+x


−1 ± 5
x=
⇔
2
x=0

♥ Bài 31 ♥
Giải phương trình sau :


3


3x + 2 + x 3x − 2 = 2 2x2 + 1

Lời giải

a.T H1 : x ≥ 1

www.k2pi.net

http://toanlihoasinh.blogspot.com/

Trang 23


24

Chương 1. Tuyển tập các bài toán
2x2 + 1 + x −

Pt (1) vô nghiệm do VT>0

+
3

(3x + 2)2

et

x3 + 3x2 − 1

(x + 1)2 + (x + 1) 3 3x + 2 +

3x − 2



3x − 2 = 0

(x − 2)(x + 2)
3(x − 2)
(x − 2)(x − 1) 3x − 2


+

+
= 0 ⇔ x = 2.

2+1
3
2
x
+
3x

2
3
3x
+
2
2x
(3x + 2) + 2 3x + 2 + 4
2
b.T H2 : ≤ x < 1.
3


P t ⇔ x + 1 − 3 3x + 2 + x 1 − 3x − 2 + 2 2x2 + 1 − 2x − 1 = 0


3x + 2 − 2 + 3x − 2



3x(1 − x)
4x2 − 4x + 3

+ √
= 0, (1)
1 + 3x − 2 2 2x2 + 1 + 2x + 1

.k2
pi.
n

Pt ⇔


3

Vậy Pt đã cho có 1 nghiệm : x = 2.

♥ Bài 32 ♥
Giải phương trình sau :




3+ x
x+ x+2
x x + x + 2 x2 + x x + 2
x2 + 3
10






+
+
+
+
=
2
2
2
3
x +x x+x+3 x +x x+3
x + x+4
x+x x+4
x x+x+ x+3
Lời giải

Điều kiện : x ≥ 0




Ta có : 3 + x = ( x + 1) + 2; x + x + 2 = ( x + 1) + (x + 1)




x x + x + 2 = (x + 1) + (x x + 1); x2 + x x + 2 = (x2 + 1) + (x x + 1)
x2 + 3 = (x2 + 1) + 2


Đặt a = 2; b = x + 1; c = x + 1; d = x x + 1; e = x2 + 1

ww
w

Khi đó phương trình đã cho trở thành :
a+b
b+c
c+d
d+e
e+a
10
+
+
+
+
=
c+d+e a+d+e a+b+e a+b+c b+c+d
3
Cộng 5 vào hai vế của phương trình ( cộng 1 vào mỗi phân số ) , ta được :
1
1
1
1
1
25
(a + b + c + d + e).(
+
+
+
+
)=
c+d+e a+d+e a+b+e a+b+c b+c+d
3
1
1
1
1
1
⇔ 3(a + b + c + d + e).(
+
+
+
+
) = 25
c+d+e a+d+e a+b+e a+b+c b+c+d
1
1
1
1
1
Đặt A = 3(a + b + c + d + e); B =
+
+
+
+
c+d+e a+d+e a+b+e a+b+c b+c+d
Theo bất đẳng thức AM − GM ta có : A.B ≥ 25
Dấu ” = ” xảy ra khi a = b = c = d = e ⇔ x = 1(T M ŒK)
Vậy phương trình đã cho có nghiệm : x = 1

♥ Bài 33 ♥
Giải phương trình sau :

www.k2pi.net



x3
1
= −x
3
x
x +1

http://toanlihoasinh.blogspot.com/

Trang 24


25

1.2 Từ câu 21 đến câu 40

Bài toán này khá đơn giản, nó dựa vào biến đổi:
x3
1

= x3 + 1 − √
3
3
x +1
x +1
Đến đây hàm số 1 phát là ra luôn

♥ Bài 34 ♥
Giải phương trình sau :

Điều kiện x ≥ 0.

2
1

=3
√ +
x + 1 − x x + x2 + 1

.k2
pi.
n


Lời giải

et

Lời giải

Viết lại phương trình dưới dạng


2 x + 1 + x + x2 + 1 − x = 3.


Nếu x > 1 khi đó V T > 2 x + 1 + x > 3 = V P , phương trình vô nghiệm.
Nếu 0 ≤ x ≤ 1.
Xét hàm số f (x) = 2



x+1+

Ta có



x +

x2 + 1 − x − 3.

1
1
x
1
1
x
f (x) = √ + √
+√
−1= √ −1 + √
+√
> 0, ∀x ∈ (0; 1].
2
x
x
x+1
x+1
x+1
x +1
Do đó f (x) là hàm đồng biến trên [0; 1]. Nhận thấy f (0) = 0 nên suy ra x = 0 là nghiệm duy nhất của phương
trình




6x − 4
2x + 4 − 2 2 − x = √
x2 + 4

ww
w

♥ Bài 35 ♥
Giải phương trình sau :

Lời giải

ĐK x ∈ −2; 2
6x − 4
6x − 4

PT ⇔ √
=√
2x + 4 + 2 2 − x
x2 + 4


2
⇔ x = hoặc 2x + 4 + 2 2 − x = x2 + 4 (1)
3
(1) ⇔ 4 2 (4 − x2 ) = (x − 2) (x + 4)
Ta thấy V T (1) ≥ 0 ≥ V P (1) do x ∈ −2; 2 , V T (1) = V P (1) ⇔ x = 2
2
Vậy PT có nghiệm x = , x = 2.
3

www.k2pi.net

http://toanlihoasinh.blogspot.com/

Trang 25


Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay

×