Tải bản đầy đủ

hoctoancapba com dethi11HK2 de so 7

hoctoancapba.com - Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán
ĐỀ THI THỬ HỌC KÌ 2 – Năm học 2010 – 2011
Môn TOÁN Lớp 11
Thời gian làm bài 90 phút

Đề số 7
I. Phần chung: (7,0 điểm)
Câu 1: (2,0 điểm) Tìm các giới hạn sau:
2 x3 + 3x 2 − 1
a) lim
x →−1
x +1

b) lim

x →+∞

(

x2 + x + 1 − x


)

Câu 2: (1,0 điểm) Xét tính liên tục của hàm số sau tại điểm x0 = 2 :
 2( x − 2)

f ( x) =  x ² − 3x + 2
2

khi x ≠ 2
khi x = 2

Câu 3: (1,0 điểm) Tính đạo hàm của các hàm số sau:
2x2 −1
a) y =
b) y = cos 1 − 2 x 2
x−2
Câu 4: (3,0 điểm) Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a, đường cao SO = a 3 . Gọi I
là trung điểm của SO.
a) Tính khoảng cách từ I đến mặt phẳng (SCD).
b) Tính góc giữa các mặt phẳng (SBC) và (SCD).
c) Tính khoảng cách giữa hai đường thẳng AC và SD.
II. Phần riêng
1. Theo chương trình Chuẩn
Câu 5a: (1,0 điểm) Chứng minh rằng phương trình : x 5 − 3 x = 1 có ít nhất một nghiệm thuộc (1; 2).
Câu 6a: (2,0 điểm)
a) Cho hàm số y = cot 2 x . Chứng minh rằng:
b) Cho hàm số y =

y′ + 2 y 2 + 2 = 0 .

3x + 1
có đồ thị (C). Viết phương trình tiếp tuyến của (C) tại điểm A(2; –7).
1− x

2. Theo chương trình Nâng cao
Câu 5b: (1,0 điểm) Chứng minh rằng phương trình: x17 = x11 + 1 có nghiệm.
Câu 6b: (2,0 điểm)
x −3
. Chứng minh rằng: 2 y′ 2 = ( y − 1) y′′ .
x+4

3x + 1
b) Cho hàm số y =
có đồ thị (C). Viết phương trình tiếp tuyến của (C), biết tiếp tuyến vuông
1− x
góc với đường thẳng d: 2 x + 2 y − 5 = 0 .
a) Cho hàm số y =

--------------------Hết------------------Họ và tên thí sinh: . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

SBD :. . . . . . . . . .


hoctoancapba.com - Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán
ĐÁP ÁN ĐỀ KIỂM TRA HỌC KÌ II – NĂM HỌC 2010 – 2011
MÔN TOÁN LỚP 11 – ĐỀ SỐ 7
Câu
1

Ý
a)

Nội dung
3

2

Điểm

2

2 x + 3x − 1
( x + 1)(2 x + x − 1)
= lim
x →−1
x →−1
x +1
x +1
lim

0,50

= lim (2 x 2 + x − 1) = 0
b)

lim

x →+∞

(

)

x 2 + x + 1 − x = lim

x →+∞

= lim

x →+∞

2

3

x +1

2( x − 2)
2
= lim
=2
x →2
x → 2 ( x − 1)( x − 2)
x →2 x − 1
f(2) = 2
(2)
Từ (1) và (2) ta suy ra f(x) liên tục tại x = 2

b)

0,50

x2 + x + 1 + x
1
1+
1
x
=
2
1 1
1+ +
+1
2
x x

lim f ( x ) = lim

a)

0,50

x →−1

0,50

(1)

2x2 −1
2 x 2 − 8x + 1
y=
⇒ y' =
x−2
( x − 2)2
y = cos 1 − 2 x 2 ⇒ y ' =

0,25
0,25
0,50

2 x sin 1 − 2 x 2
1− 2x

0,50

2

0,50

4

0,25

a)

b)

Gọi M, N lân lượt là trung điểm của CD và CB.
S.ABCD là hình chóp tứ giác đều nên có: OM ⊥ CD, SM ⊥ CD ⇒ CD ⊥ (SOM)
Vẽ OK ⊥ SM ⇒ OK ⊥ CD ⇒ OK ⊥(SCD)
(*)
I là trung điểm SO, H là trung điểm SK ⇒ IH // OK ⇒ IH ⊥ (SCD)
(**)
OK
Từ (*) và (**) ta suy ra IH =
2
1
1
1
4
a 3
a 3
=
+
= 2 ⇒ OK =
⇒ d (I ,(SCD )) = IH =
2
2
2
2
4
OK
OM
SO
3a
∆SMC = ∆SNC (c.c.c) ⇒ MQ ⊥ SC ⇒ NQ ⊥ SC
·
(SCD ) ∩ (SCB) = SC ⇒ ((SCD ),(SCB)) = MQN
2

0,25

0,25
0,25
0,25
0,25


hoctoancapba.com - Kho đề thi THPT quốc gia, đề kiểm tra có đáp án, tài liệu ôn thi đại học môn toán
SM 2 = OM 2 + SO 2 = a2 + 3a2 = 4a 2
1
1
1
1
1
5
4a2
2
=
+
=
+
=

MQ
=
∆SMC :
5
MQ 2 MS 2 MC 2 4a 2 a2 4a 2

c)

5a

6a

a)

b)

5b

6b

MQ 2 + NQ 2 − MN 2
1
·
·
⇒ cos MQN
=
= − ⇒ MQN
= 120 0
MQ.NQ
2
AC ⊥ BD, AC ⊥SO ⊂ (SBD) (do SO⊥(ABCD)) ⇒AC⊥(SBD).
Trong ∆SOD hạ OP ⊥ SD thì cũng có OP⊥ AC

0,50
0,50
0,25
0,50
0,25
0,25
0,25

= −2(1 + cot 2 2 x ) + 2 cot 2 2 x + 2

0,25

= −2 − 2 cot 2 2 x + 2 cot 2 2 x + 2 = 0
4
3x + 1
y=
⇒ y′ =
( x − 1)2
1− x

0,25

k = y′ (2) = 4
⇒ PTTT: y = 4 x − 15

0,25

17

0,50

0,25

− x − 1 ⇒ f ( x ) liên tục trên R
11

0,25

f(0) = –1, f (2) = 217 − 211 − 1 = 211 (26 − 1) − 1 > 0 ⇒ f (0). f (2) < 0
⇒ phương trình đã cho có ít nhất một nghiệm
7
−14
x −3
⇒ y" =
y=
⇒ y' =
2
( x + 4)
( x + 4)3
x+4
2 y′ 2 = 2.

49
4

=

98

( x + 4)
( x + 4)4
 x − 3  −14
−7
−14
98
( y − 1) y′′ = 
− 1 ÷.
=
.
=
 x + 4  ( x + 4)3 x + 4 ( x + 4)3 ( x + 4)4
b)

0,25

1
1
1
1
1
5
a 30
=
+
= 2 + 2 = 2 ⇒ d ( AC , BD ) = OP =
2
2
2
5
OP
SO OD
3a 2a
6a
5
Gọi f ( x ) = x − 3 x − 1 liên tục trên R
f (−1) = 1, f (0) = −1 ⇒ f (−1). f (0) < 0
⇒ phương trình dã cho có ít nhất một nghiệm thuộc (–1; 0)
2
y = cot 2 x ⇒ y′ = − 2
sin 2 x
2
y′ + 2 y 2 + 2 = −
+ 2 cot 2 2 x + 2
2
sin 2 x

Gọi f ( x ) = x

a)

0,25

0,50
0,25
0,25
(*)

0,25

(**)

0,25

Tử (*) và (**) ta suy ra: 2 y′ 2 = ( y − 1) y′′
Vì tiếp tuyến vuông góc với d: 2 x + 2 y − 5 = 0 nên tiếp tuyến có hệ số góc k = 1
Gọi ( x0 ; y0 ) là toạ độ tiếp điểm.
f ′( x0 ) = k ⇔

 x = −1
4
= 1 ⇔ ( x0 − 1)2 = 4 ⇔  0
2
( x0 − 1)
 x0 = 3

0,25
0,25
0,25

Với x0 = −1 ⇒ y0 = −1 ⇒ PTTT : y = x

0,25

Với x0 = 3 ⇒ y0 = −5 ⇒ PTTT : y = x − 8

0,25

3



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay

×