Tải bản đầy đủ

Khái quát về IR2104 Tài liệu giúp bạn học tốt kỹ năng về chuyên ngành.

Data Sheet No. PD60046-S

IR2104(S) & (PbF)
HALF-BRIDGE DRIVER
Features

Product Summary

• Floating channel designed for bootstrap operation











Fully operational to +600V

Tolerant to negative transient voltage
dV/dt immune
Gate drive supply range from 10 to 20V
Undervoltage lockout
3.3V, 5V and 15V input logic compatible
Cross-conduction prevention logic
Internally set deadtime
High side output in phase with input
Shut down input turns off both channels
Matched propagation delay for both channels
Also available LEAD-FREE

VOFFSET

600V max.

IO+/-

130 mA / 270 mA

VOUT

10 - 20V

ton/off (typ.)

680 & 150 ns

Deadtime (typ.)

520 ns

Packages

Description
The IR2104(S) are high voltage, high speed power
8 Lead SOIC
MOSFET and IGBT drivers with dependent high and low
8 Lead PDIP
IR2104S

side referenced output channels. Proprietary HVIC and
IR2104
latch immune CMOS technologies enable ruggedized
monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic.
The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The
floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which
operates from 10 to 600 volts.

Typical Connection
up to 600V
VCC

VCC

VB

IN

IN

HO

SD

SD

VS

COM

LO

TO
LOAD

(Refer to Lead Assignment for correct pin configuration) This/These diagram(s) show electrical
connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout.

www.irf.com

1


IR2104(S) & (PbF)
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage
parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are
measured under board mounted and still air conditions.

Symbol

Definition

Min.

Max.

Units

VB

High side floating absolute voltage

-0.3

625

VS

High side floating supply offset voltage

VB - 25

VB + 0.3

VHO

High side floating output voltage

VS - 0.3

VB + 0.3

VCC

Low side and logic fixed supply voltage

-0.3

25

VLO

Low side output voltage

-0.3

VCC + 0.3

VIN

Logic input voltage (IN & SD )

-0.3

VCC + 0.3



50

dVs/dt
PD
RthJA

Allowable offset supply voltage transient
Package power dissipation @ TA ≤ +25°C
Thermal resistance, junction to ambient

(8 lead PDIP)



1.0

(8 lead SOIC)



0.625

(8 lead PDIP)



125

(8 lead SOIC)



200

TJ

Junction temperature



150

TS

Storage temperature

-55

150

TL

Lead temperature (soldering, 10 seconds)



300

V

V/ns
W
°C/W

°C

Recommended Operating Conditions
The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the
recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential.

Symbol

Min.

Max.

VB

High side floating supply absolute voltage

Definition

VS + 10

VS + 20

VS

High side floating supply offset voltage

Note 1

600

VHO

High side floating output voltage

VS

VB

VCC

Low side and logic fixed supply voltage

10

20

VLO

Low side output voltage

0

VCC

VIN

Logic input voltage (IN & SD )

0

VCC

TA

Ambient temperature

-40

125

Units

V

°C

Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip
DT97-3 for more details).

2

www.irf.com


IR2104(S) & (PbF)
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15V, CL = 1000 pF and TA = 25°C unless otherwise specified.

Symbol

Definition

Min. Typ. Max. Units Test Conditions

ton

Turn-on propagation delay



680

820

VS = 0V

toff

Turn-off propagation delay



150

220

VS = 600V

tsd
tr

Shutdown propagation delay



160

220

Turn-on rise time



100

170

Turn-off fall time



50

90

tf
DT

Deadtime, LS turn-off to HS turn-on &
HS turn-on to LS turn-off

400

520

650

MT

Delay matching, HS & LS turn-on/off





60

ns

Static Electrical Characteristics
VBIAS (VCC, VBS) = 15V and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to
COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

Symbol

Definition

Min. Typ. Max. Units Test Conditions

VIH

Logic “1” (HO) & Logic “0” (LO) input voltage

3





VIL

Logic “0” (HO) & Logic “1” (LO) input voltage





0.8

VCC = 10V to 20V
VCC = 10V to 20V
V

VSD,TH+

SD input positive going threshold

3





VSD,TH-

SD input negative going threshold





0.8

VOH

High level output voltage, VBIAS - VO





100

VOL

Low level output voltage, VO





100

ILK

Offset supply leakage current





50

IQBS

Quiescent VBS supply current



30

55

IQCC

Quiescent VCC supply current



150

270

IIN+

Logic “1” input bias current



3

10

VIN = 5V

IIN-

VIN = 0V

Logic “0” input bias current





1

VCCUV+

VCC supply undervoltage positive going
threshold

8

8.9

9.8

VCCUV-

VCC supply undervoltage negative going
threshold

7.4

8.2

9

IO+

Output high short circuit pulsed current

130

210



IO-

Output low short circuit pulsed current

270

360



www.irf.com

VCC = 10V to 20V
VCC = 10V to 20V

mV

IO = 0A
IO = 0A
VB = VS = 600V
VIN = 0V or 5V

µA

VIN = 0V or 5V

V

mA

VO = 0V
PW ≤ 10 µs
VO = 15V
PW ≤ 10 µs

3


IR2104(S) & (PbF)
Functional Block Diagram
VB

HV
LEVEL
SHIFT

Q
PULSE
FILTER

HO

R
S

VS

IN
PULSE
GEN

UV
DETECT

DEAD TIME &
SHOOT-THROUGH
PREVENTION

VCC

LO

SD

COM

Lead Definitions
Symbol Description
IN

Logic input for high and low side gate driver outputs (HO and LO), in phase with HO

SD
VB

Logic input for shutdown

HO

High side gate drive output

VS

High side floating supply return

VCC

Low side and logic fixed supply

High side floating supply

LO

Low side gate drive output

COM

Low side return

Lead Assignments
VCC

VB

2

IN

HO

3

SD

VS

6

4

COM

LO

5

1

4

8
7

VCC

VB

8

IN

HO

7

3

SD

VS

6

4

COM

LO

5

1
2

8 Lead PDIP

8 Lead SOIC

IR2104

IR2104S
www.irf.com


IR2104(S) & (PbF)

IN(LO)

IN

50%

50%

SD

IN(HO)
ton

toff

tr
90%

HO

LO
HO

LO

Figure 1. Input/Output Timing Diagram

90%

10%

10%

Figure 2. Switching Time Waveform Definitions

50%

SD

tf

50%

IN
50%
90%

tsd

HO
LO

90%

HO

10%
DT

LO

DT

90%

Figure 3. Shutdown Waveform Definitions
10%

Figure 4. Deadtime Waveform Definitions
IN (LO)
50%

50%

IN (HO)

LO

HO
10%
MT

MT
90%

LO

HO

Figure 5. Delay Matching Waveform Definitions

www.irf.com

5


1 40 0

1400

1 20 0

1200

Turn-On Delay Time (ns)

T urn -O n D e lay T im e (n s)

IR2104(S) & (PbF)

1 00 0

M a x.
8 00
6 00

T yp .

4 00
2 00

Max.

1000
800

Typ.

600
400
200
0

0
-50

-25

0

25

50

75

1 00

10

1 25

12

Temperature (°C)

14

16

18

20

VBIAS Supply Voltage (V)

Figure 6A. Turn-On Time vs Temperature

Figure 6B. Turn-On Time vs Supply Voltage

1000

5 00

800

Turn-Off Delay Time (ns)

Turn-On Delay Time (ns)

Max.

600
Typ.
400
200

4 00
3 00
M ax .

2 00
1 00

T yp .
0

0
0

2

4

6

8

10

12

14

16

18

-50

20

-25

0

Input Voltage (V)

500

1000

400

800

Max.

200
Typ.
100
0

75

1 00

1 25

600
Ma x .

400
200

Typ
0

10

12

14

16

18

20

VBIAS Supply Voltage (V)

Figure 7B. Turn-Off Time vs Supply Voltage

6

50

Figure 7A. Turn-Off Time vs Temperature

Turn-Off Delay Time (ns

Turn-Off Delay Time (ns)

Figure 6C. Turn-On Time vs Input Voltage

300

25

Temperature (°C)

0

2

4

6

8

10

12 14

16 18

20

Input Voltage (V)

Figure 7C. Turn-Off Time vs Input Voltage

www.irf.com


IR2104(S) & (PbF)
500
Shutdown Delay Time (ns)

Shutdown Delay Time (ns)

500
400
300
M ax.

200
100

T y p.

0

400
Max.

300
200

Typ.
100
0

-5 0

-2 5

0

25

50

75

100

125

10

12

Temperature (°C)

Figure 8A. Shutdown Time vs Temperature

16

18

20

Figure 8B. Shutdown Time vs Voltage

500

500

Turn-On Rise Time (ns)

Turn-On Rise Time (ns)

14

VBIAS Supply Voltage (V)

400
300
200

M ax.

100

400
300
M ax.
200
100
Typ.

Typ.
0

0
-5 0

-2 5

0

25

50

75

100

10

125

12

Temperature (°C)

Figure 9A. Turn-On Rise Time
vs Temperature

16

18

20

Figure 9B. Turn-On Rise Time vs Voltage

200

Turn-Off Fall Time (ns)

20 0

Turn-Off Fall Time (ns)

14

VBIAS Supply Voltage (V)

15 0

10 0
M ax.
50

150
M ax.
100

50
Typ.

Ty p.
0

0
-50

-25

0

25

50

75

10 0

Temperature (°C)

Figure 10A. Turn-Off Fall Time
vs Temperature

www.irf.com

12 5

10

12

14

16

18

20

VBIAS Supply Voltage (V)

Figure 10B. Turn-Off Fall Time vs Voltage

7


1400

1400

1200

1200

Deadtime (ns)

Deadtime (ns)

IR2104(S) & (PbF)

1000
800

M ax.

600
Typ.

400

M ax.
800
600
Typ.
400
M in .

M in .

200

1000

200

0

0
-5 0

-2 5

0

25

50

75

100

125

10

12

Temperature (°C)

8

8

7

7

6
5
M in.

3
2

20

6
5
4

M in.

3
2
0

0
-50

-25

0

25

50

75

100

10

125

12

Figure 12A. Logic "1" (HO) & Logic “0” (LO)
& Inactive SD Input Voltage
vs Temperature

16

18

20

Figure 12B. Logic "1" (HO) & Logic “0” (LO)
& Inactive SD Input Voltage
vs Voltage
4

3.2

3 .2
In p u t V o lta g e (V )

4

2.4
1.6
Max.
0.8
0
-50

14

Vcc Supply Voltage (V)

Temperature (°C)

Input Voltage (V)

18

1

1

2 .4
1 .6
M ax.
0 .8
0

-25

0

25

50

75

100

125

Temperature (°C)

Figure 13A. Logic "0" (HO) & Logic “1” (LO)
& Active SD Input Voltage
vs Temperature

8

16

Figure 11B. Deadtime vs Voltage

In pu t V olta g e (V )

Input V oltag e (V )

Figure 11A. Deadtime vs Temperature

4

14

VBIAS Supply Voltage (V)

10

12

14

16

18

20

Vcc Supply Voltage (V)

Figure 13B. Logic "0" (HO) & Logic “1” (LO)
& Active SD Input Voltage
vs Voltage

www.irf.com


IR2104(S) & (PbF)
1

High Level Output Voltage (V)

High Level Output Voltage (V)

1
0 .8
0 .6
0 .4
M ax.
0 .2

0 .8
0 .6
0 .4
M ax.

0 .2
0

0
-5 0

-2 5

0

25

50

75

100

10

125

12

1

18

20

1

Low Level Output Voltage (V)

Low Level Output Voltage (V)

16

Figure 14B. High Level Output vs Voltage

Figure 14A. High Level Output
vs Temperature

0 .8
0 .6
0 .4
0 .2

M ax.

0
-5 0

-2 5

0

25

50

75

100

0 .8
0 .6
0 .4
0 .2
M ax.
0
10

125

12

400
300
200
100
M ax.
0
0

25

50

75

100

Temperature (°C)

Figure 16A. Offset Supply Current
vs Temperature

www.irf.com

125

Offset Supply Leakage Current (µA)

500

-2 5

16

18

20

Figure 15B. Low level Output vs Voltage

Figure 15A. Low Level Output
vs Temperature

-5 0

14

Vcc Supply Voltage (V)

Temperature (°C)

Offset Supply Leakage Current (µA)

14

Vcc Supply Voltage (V)

Temperature (°C)

500
400
300
200
100

Max.

0
0

100

200

300

400

500

600

VB Boost Voltage (V)

Figure 16B. Offset Supply Current
vs Voltage

9


IR2104(S) & (PbF)
150

VBS Supply Current (µA)

VBS Supply Current (µA)

1 50
1 20
90
60
M ax .
30
T yp .
0

120
90
60

Max .

30
Ty p.
0

-50

-25

0

25

50

75

1 00

1 25

10

12

Temperature (°C)

Figure 17A. VBS Supply Current
vs Temperature

16

18

20

Figure 17B. VBS Supply Current
vs Voltage

700

700

Vcc Supply Current (µA)

Vcc Supply Current (µA)

14

VBS Floating Supply Voltage (V)

600
500
400
M ax.

300
200
100

Typ.

600
500
400
300

M ax.

200
100
Typ.

0

0
-5 0

-2 5

0

25

50

75

100

125

10

12

Temperature (°C)

Figure 18A. Vcc Supply Current
vs Temperature

18

20

30

Logic 1” Input Current (µA)

Logic 1” Input Current (µA)

16

Figure 18B. Vcc Supply Current vs Voltage

30
25
20
15
10
M ax.
5
Typ.
0

25
20
15
10

M ax.

5

Typ.

0
-5 0

-2 5

0

25

50

75

100

Temperature (°C)

Figure 19A. Logic"1" Input Current
vs Temperature

10

14

Vcc Supply Voltage (V)

125

10

12

14

16

18

20

Vcc Supply Voltage (V)

Figure 19B. Logic"1" Input Current
vs Voltage

www.irf.com


IR2104(S) & (PbF)
5
Logic "0" Input Current (uA)

Logic “0” Input Current (µA)

5
4
3
2
Max.
1

4
3
2
Max.
1
0

0
-50

-25

0

25
50
75
Temperature (°C)

100

10

125

Figure 20A. Logic "0" Input Current
vs Temperature

VCC UVLO Threshold - (V)

VCC UVLO Threshold +(V)

10
Typ.
M in.
8
7
6

10
Max.
9
Typ.
8
7

Min.

6

-50

-25

0

25

50

75

100

-50

125

-25

0

Temperature (°C)

50

75

100

125

Figure 21B. Vcc Undervoltage Threshold(-)
vs Temperature
500
Output Source Current (mA)

500
Output Source Current (mA)

25

Temperature (°C)

Figure 21A. Vcc Undervoltage Threshold(+)
vs Temperature

400
Typ.

200
100

20

11

M ax.

300

14
16
18
VCC Supply Voltage (V)

Figure 20B. Logic "0" Input Current
vs Voltage

11

9

12

Min.

0
-50

400
300
200
T y p.
100
M in.
0

-25

0

25
50
75
Temperature (°C)

100

Figure 22A. Output Source Current
vs Temperature

www.irf.com

125

10

12

14
16
18
VBIAS Supply Voltage (V)

20

Figure 22B. Output Source Current
vs Voltage

11


IR2104(S) & (PbF)

70 0

6 00

Output Sink Current (mA)

Output Sink Current (mA)

7 00

T yp .

5 00
4 00
3 00

M in .
2 00
1 00

60 0
50 0
40 0

Ty p.

30 0
20 0
M in.
10 0

0

0
-50

-25

0

25

50

75

1 00

1 25

10

Figure 23A. Output Sink Current
vs Temperature

12

14

16

18

20

VBIAS Supply Voltage (V)

Temperature (°C)

Figure 23B. Output Sink Current vs Voltage

Case Outlines

8 Lead PDIP

12

01-6014
01-3003 01 (MS-001AB)

www.irf.com


IR2104(S) & (PbF)

D

DIM

B
5

A

FOOTPRINT

8

6

7

6

5
H

E
1

6X

2

3

0.25 [.010]

4

e

A

6.46 [.255]

3X 1.27 [.050]

e1

0.25 [.010]

A1

.0688

1.35

1.75

A1 .0040

.0098

0.10

0.25

b

.013

.020

0.33

0.51

c

.0075

.0098

0.19

0.25

D

.189

.1968

4.80

5.00

.1574

3.80

4.00

E

.1497

e

.050 BASIC

e1

MAX

1.27 BASIC

.025 BASIC

0.635 BASIC

H

.2284

.2440

5.80

6.20

K

.0099

.0196

0.25

0.50

L

.016

.050

0.40

1.27

y









y
0.10 [.004]

8X L

8X c

7

C A B

NOTES:
1. DIMENSIONING & TOLERANC ING PER ASME Y14.5M-1994.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INC HES].
4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA.

8 Lead SOIC

www.irf.com

MIN

.0532

K x 45°

A
C

8X b

8X 1.78 [.070]

MILLIMETERS

MAX

A

8X 0.72 [.028]

INCHES
MIN

5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO
A SUBSTRATE.

01-6027
01-0021 11 (MS-012AA)

13


IR2104(S) & (PbF)

LEADFREE PART MARKING INFORMATION
Part number

Date code

IRxxxxxx
YWW?

Pin 1
Identifier
?
P

MARKING CODE
Lead Free Released
Non-Lead Free
Released

IR logo

?XXXX
Lot Code
(Prod mode - 4 digit SPN code)

Assembly site code
Per SCOP 200-002

ORDER INFORMATION

Basic Part (Non-Lead Free)
8-Lead PDIP IR2104 order IR2104
8-Lead SOIC IR2104S order IR2104S

Leadfree Part
8-Lead PDIP IR2104 order IR2104PbF
8-Lead SOIC IR2104S order IR2104SPbF

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
This product has been qualified per industrial level
Data and specifications subject to change without notice. 4/2/2004

14

www.irf.com



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay

×