Tải bản đầy đủ

Bài tập trắc nghiệm Lũy thừa 20162017

-a

LU? T}IUA
L

[l- 1)-o'"
It\-: ta duoc:
| +l,
\16' \,8/

Cflu1: Tinh: K =

A.

I

Cflu2: Tinh: K =

1o-3 : 1o-2

A.


c.

B. 16
2'.2-t +5-3.5*

L2

10

@ro

18

, ta duo. c

-(o,zs)o

c. t2

@to

,/

D.

15

1\'

2:4-2 +(3-' )' I 1

\

/lol\),/
t-' ,.taduoc
C*u3: Tinh: K =
(r)-'
5-'.25'+ (0, z)o .l-l


\2)

I
B.-

(A)

\_/ -13

I

5

c.-

-J

n.?

a

J

3

2

CAu4: Tfnh: K = (0,04)-''' - (0,125)-l
, ta duo. c
\/
(
C. 120

A.90

CAuS: Tinh: K

A.z

,Y

=

87

:

8J121
6

D.

125

4

3i - 31.3i.

8.3

ra duoc

@i

D.4
2

C6u5: Cho a li mdt sd duong, bidu thrlc ul Ji vidt dudi dang lu! thila vdi sd mfr hftu t!, lil:
j

5_

(a)
\-/ uu

B.
o

6

a6

^-=

cAuT: Eidu thrlc u',11u] vidt
i^2si

dr-r-oi

C.

ai

dang

lu!

A.aI

(9u,
cauS: Bidu thfc Ji.fi.{/t'
7_52-5"

A.

xr

B.

A

cflulo:

=

Vx

Ch_o

.

Khid6

f(x) =

Cflul2: Tinh: K

s

-

i

rf t}:

\' *l

bang:

D

o,4

fr!'l
bdne:
10,/ a
[

rb) 13

B.'^

@ 2,7

j'

Cu)

G/,3

\-/

10

Cflult:

ln:

D.al

c. xl

il

A.t

$

.

Khi d6 f(g.S?)

J*.}',

ttrrra vryi sd mfl hfru

(x > 0) vidt du6i dang ru! thira v6i sd mfi hffu

'!:P
o,1 V;.V;.

Cho fix)

I

D. a7

C.aE

xi

Cflu9: Cho f(x) =

il

D.4

10

fifi'dt' . Khid6 f(Z,1)bang:
8.3,J
C. 4,7

D.

4s+J1.2r-dz .2+*Ji, ta duo. c:

8.6

c.7

5,1

'

8

.

.

A.
(D)
i
CAul3: Trong ci{c phuong trinlr sau dAy, phuong trii6 n}o c6 nghiOm?
1---1l:.xl
A. x6 +
B.
C. xi +(x-r); =g
@ ^Ciul4: M€nh dd nio sau dAy li
i:

1=0

o

Jx-4+5:0
dring?

(f -Jr)-. (S -Jr)'

. (r-J7)' . lr-Jl).
t

/

r-\3

i

CAu15: Chon m0nh

dO

r-tl

B (*1 -J7)' , (J"
-r3
(d(^ -.,0)'

dring trong c6c m0nh dri

sau:

-.,D

.(+-Ji)^

I
i
i

-t=0


A. 4-J5 > 4-'5
Carr16:

..[i)"
.[;)

B. 3r'r < 3l'?

Cho;" >;'t. l{..t lilin ii}i;.liu iial,iii drirrg?

A.cr<$

@r;or$

(t

!$*

*'

CAu18: RLit gon hidu

9a2b

thfc: JSLJbt
B.

-9a2b

Cfiulg: Rrit gon bidtr tlrLic:
A. x'(x +

D.a.B=l

, ta cludc:

@ *'lx+

C.

rl

t r-..--

ti

c.V;

/

A"xr+1

I

1r \o

D.i:i

" [3)',

[:,r

(rt; * {&. *, ) (^ - ..,E - r )
@)x2+'x+1 C.x2-x+1

=_(

*
rE "'?

r

)

ta duoc:

D.x2-1

:;(r^ * u o )= t rhi gii tri curr o- la:
j

A.3
f\-4U!4.
Ax1A. r-h^
UrlV

J;
1

B (?\"
t3l

Cin22: Riit gon bidu thfrc o

CAu23: lieu

D.

I

5

/r\ra

l:l
\,3

o lx(x + t)l

-xo(x+i)'

yrr/xlx1r : x '' , ta dtloc:

B.{['

@v;

D. Kdt quilkhdc

Oo'1t,|

@.

\[L- - U' . lit duoc:

1)

CAu20: Rdi gorr bieu thLic:

A.

C.u+$=g

\]

+)' I r",iiu thric nitgoncua K l):
-y'''rt(
I i r-r.,i)'
x)
\^
i[
\
C.x+l D.x-l
B.2x

cau17: L-hoK= i

A"

,[

@(3)'.(i)"

2
?

v

c.
C.r

8.2
''''

7

, a

B.2a

A,
/\_-/

A V;
Cfiu29: Cho 9' + 9-*

-:

B.

.

-r/-r
vJ -1,/^1

:

ii

3a

D.4a

j:':

(x > 0), ta duoc:

(9'r'*

:23 . Khi do bidu th(rc K =

sl22

:,fii nVG*i,/+ p. tB+{/a

c.

(b > 0). ra duoc:
(c, u'
D. b4

b

x.{"x' :x'n
-+

V,

to > 0), ta duoc:
C.

ti

ta duoc:

1'/I-r

II

\u)

Ciru27: Rtit gon hieu thuc 6{r:
A. b
B. br
CAu28: RLlt gon bidu thr?c

J-;
.1/<

s. i/i *
uut I

D.creR

C.cr<3

rhf.

+i/lu + il4

Ciu26: Rrit gon bidu thfic

rA\
\/
)

\-

B.ct>3

CAu25: Truc cdn thttc & mAu bi
5

-1.

.{A rldu c-,r
,t^.; ldI; vlltrb,
.t,',-^,)
-\ E,}-t . \IA-titrlrrrr
uL -;^
Jutr urrJ

@-:il25

a

(U.O

1

cl

o. *l

1t1' I :-l
r

I_J

a(

-J

1'1

o-.Y

}t

c6 gi6 tri bang:

1

o rt l-l

(U

o
1\1.

D.2
,

a

-t-l

C*u30: Cho bidu th(rc A = (a + t)-' + (U * l)-' .Neua= {2+J3
\/

I

vdu=

(r-€)

'

nl,

u\j

n.-

thi gi6 tri cria A lh:

1l


I).2

@r

f]. ;i

u.3

HANI SO T,TiV'TTILTA

CAul: Hlim sd y =
A. [-1; 1]

,r ---;
Vl - x' cd tAp xiic dinh lir:
B.(-*; -11 u [i; +co)

CA.uZ: Hhm sd y =

(o*' -t)-'

A.R

B(o;

CAu3: Hlim sd y = (o

A. [-2;2]
C*u4: Hhrn

sd y =

A.R
CAu5: Hlm sd y =

*^'

+m))

0*{j,;i

" [j, ;)

c6 tap x6c dinh liL:

);

v

l2;

+a)

@n

D. R\{-1; 1I

*^,1(^' - I )" co tap x6c dinh ld:
(U (1: +*) C. (-l; 1)
D:R\{-l;

{tr;f

c6 dao h}m

th:

C.

|

-;
I

1}

i

[t-ur.r)L'

r

Uriu6: Hdrir sd y ,= i'Li-ii

\At

@n

}

li:

l

B. (-oo: 2)

A\
4x
lAJv'=:
\-/'
?i/-2 -

.vJ

c6 tap xdc dinh

C. l1\,{-1; I

y' = 2xV^'+

r

:D.

y' =

.O clao h;inr f'(0) lh:

s. 1

c.2

J

D.4

r . Dao hlm f'(x) c6 r6p xdc dinh 1I:
R
C. (-co;0) u (2; +m)
D. R\{0; 2i
_&Or ,,
CAuS: Hdm so y = i/';;t' c6 dao hhm I):
Cfiu7: Cho hlm ,d y =^tlT* A.

,

:

C.

,r--- j
+ bx

y' = 3bx'{/a

D. y' =
I

C;:iu9: Cha f(x) ,= x:il;2-. Dao hi\m f'(1; bangi

A."
8

cflu1O: cho f(x) =

A.

I

@:
m

c.2
.

D.4

Dao hhm f'(0) b[ng:

@#

c"

Cau1tr: Trong cdc him so sau

dA1,,

him

v,
so

D.4

nio dring biai trdn cic khoang no xii.c dinhi

,l;
cau12: cho hlm s6 y = (x

2)-t . I{0

:

y" khong phq thut\c v)o r lh:
B.y" -6y'=0
{-.Zy', -3y=0
Q).V"+2y=[)
,D.(y,,)r-4y=0
(;aul3lCho
him so y = x'. f}n rnflnh ctd sai trong c{c ur6nh dd sau:
+

thLlc giiia y vh

;

E. Dd rhi hirm so di ilrra .licrn 1 I : t;
C. Dd rhi harn sO cri hai clu&rg ti6rn ctiii
D. Dd tiri hlrn so c6 rn6t tAm doi xfrng

:

;.


--'teula:

1

Tren cld thi (C) ciia hirm
phucfilg trinh il:

A.v=:x+[
'2

sci

1'= x2 la;r clidrn Mo c6 hoinh d0 x^ = i. Tidp tuydn cita (C') tai didrn N'{.., c6

Cr=

;1.

Ciuls: Tren cl6 thi cira hlm

so

1+t
y = xl-'la1 didm Mo c6 holnh

h0 so s6c bins:

G,;

C.v = nx-x+l

Z"-I-'

C.2n-1

B rn

D.y=
'27-rx+,1+i
?

c16 xn

= 2* .Tidp tuyen cta (C) tai didrn Mn c6

D.3

lOcanir
Caul: Cho a > 0 vI a+ l. Tim monh dd dring trong c6c menh dd sau:
B. iog.l = a vh log"a = C
A. 1og" x c6 nghia voi Vx

O

C. log"xy = log.x.log.y

CAu2: Cho a > 0 vir a+ 1,x i')r y

li

C.

1og"

B.

y

(* t y) = logn x + 1og. Y

loe
""

l=
x

fg:

2

CAu4: 1og, ii

; .1

a'

(a > 0.

lof" x

log. x = logn a.log.
[D,
\_/

c.-

D.2

c.'5

D.4

4

8

1) trirng:

1

(n.-\J3
CAuS:

5

3

a+

B.
J

J

log, {52 bang:
I
-'s

A.

4

B.-

4

5

@;

D.3

CAu6: 1ogr,0,125 b[ng:

- A4

6;'

c.2

D.5

/ .:r,t::fJ\
C5ru7: los. i l1i 11- | brng'
\' '\a )
B. L?

@:

5

q

c.-

D.2

@+

D.5

(c.

1000

D. 1200

c.4000

D.3800

c.50

6,,

5

CAuS: 49to'tt2 bang:

A.2

8.3

-' bzing:
200 ts.400

L

ios, to

CAu9: 64:
A.

Cau10: _10'o218' bang:

fA)+qou
\/,

caull:

oiros:3+3luers

A.25

B.42oo

bing:
8.45

a+ 1, h > 0) bang:
CAu12: u3-21os"b
ac. a'b'
B.
(ry.
Caul3: Ndri iog- 243 = 5 thi x bang:
(a > 0,

utu'

H.^ L

a'b

@..-,3

(x > 0,n * 0)

1

C&u3: 1og. tT bang:

A-l.

x

hai sd dtrong. Tim mOnh d0 dfing trong c6c m0nh cld sarr:

x losx

A. Ioc
aa ---:ry log,

ro*" xn = nlog.

c.4

D.

ab2

D.5

x


'------\

=-4

c&u14: Ndu iog, ztr{i

@#
Ciul5:

rhi x bang:

c.4

B. 12

D.5

3logr(logo 16)+1og, 2 bang:

>\?

B"3

IAI2
\-/

C.4

CAu16: Ndu log, x = llogu9 -log"

A.?
55
Cflul7: Ndu

D.5

I

*

=

+1og" 2 (a > 0,

as

r.1

1og"

5

a*

1) thi x b[ng:

D.3

-5

ua 9 -31og.
l(1ogua 4) (a > 0, a* 1) th) x blng:
2'

A. 2J'

B.

@ u'a'

B.

J'

c.8
D. 16
CAu18: Neu 1og, x =51ogz a+4logrb (a, b >0) thi x bing:

aab'

c. 5a + 4b D" 4a + 5b
Caul9*d{€u log, x = 8*g, ab) -ZIog, a3b (a, b > 0) thi x bang:
A. aob6 (BJ a'b'o
C. a6b',
D. arb,o
CAu20: C}o$2 = a. Tinh 1925 theo a?

4.2+a

8.2{2+3a}

C&u21: Cho lg5 = a. Tinh

tgf
"64

4.2+5a

@r,,-,

tneo at

B. 1-6a

Cilr.Zh: Cho lg2 = a. Tinh

WEitheo
"4

C.4-3a

@

2a-1

a

jt,,.r)
tl-reo a

li:

:

C-Za+3

a+1
Cau25: Lfho log.5 = *; Iog, 5 -= b . Khi ct,i logu 5 tinh theo

A.
CAu26:

OjL

-]a+b

Gii

A. Ztos,(a+b)=log:
C. log,
Cim27: log*

A.E
CAu28: Vdi

c.

-a+b

sri ta c5 h0 thric a2 + b2

=

7ab

a+

a

b-

T

8.1ogo

gi;1

D. 4log,
vl

ulo
6

81 bang:

tri nlo c,ia x rhi bidu

@ o CAruZ9: TQp ho-p cdc gi6

tirL?c

B.x>2

+bz

Ii dring?(a+bl

.-*')

logu (2x

nghia?
C.-lc6

=

,i?.

q[+

logr
=togrir+
aL b
',

(drz

a7

8.9

az

@2zlos,+=tos,iu+log,b

b)

+ Iog,

,D.

;'*'*

(a,b > 0). H0 thrlc nlo sau day

a+log,b

Z{togra

,D.2-3a

v) b th:

o rL

=

n a_u.vd-:

4')

ii:

B.u

a-l

ry

fl.6+7a

C.2(5a +

Cau24: Cho log,6 = a " Khi do iog.i8 tinh

1tr.
\,

@o1u-

a?

Ceu23ICho logr 5 = a . Khi d6 logo 500 rfnh theo

A.3a + 2

D. 3(5 - 2a)

i,
i

lD.x<3

- r' -2^) cd nghia: lh:
lpCr,0) u (2; +oo) r'[. (0; 2) u

rri cira x dd Uidu thrlc log, (*'

A. (0; 1)
B. (1; +m)
CAu30: log o 3.1og,36
bang:
al
"V6

,--.1

l;

(4; +m)

= lnu,g', kr1"b


,,\

c.z

B.-?

@)+

D. I

F{A}l So n'rlr - H"cM sd
Caul: Tirn

l0c.,rRir

trcng c6c rnenh A. I-{}rn sdy - a' vdi 0 < a < i ih ;nOt lihrn sdddng bidn tr€n (-oc,; i-co)
B. Hlrn so y - a' vdi a > I th m*t hlm sd nghich bidn tr0n (-m: +cc)
C. Dd thi li)"m sd y = a* (0 < a * 1) 1*on cli qua didrn (a ; 1)
m0nl',. CB dring

/-\
\-/

II""
;
i.a I

/n.bO thi c6c hirm sdy = a' vI y = i -:
CAu2: Cho a >

l

(0 < a

* l) thi doi xrrng vdinhau qua truc tung

Tim m0nh d6 ssi trqrns cdc m6nh di sau:

A.a'>1khix>0
8.0QNeux (n)fruc tung li ti€m cAn dring cira dt) thi hhm so y = a"
Cdru3: Cno 0 < a

< i. Tim menh

dd sai trcrng c:6c m6nh dii sau:

A.a'>lkhix<0
/\8.00
($ n-eu Xr ( Xz thi a'' < a"
D. Truc holnh li tiOm cAn ngang c&a Cd thi hhm sd v = a'
CAu4:

fim

dfng trong c6c menh dd sa.u:
A. Hdm sdy = 1og, x vcri 0 < a < I 1)rmOt hlrn so ddng bidn trOn kho6'ng (0 ; +cc)
B. H).m s6 y = iog" x v 1 lirm6t h)m so nghich bien tr6n khoang (0 ; +co)
mOnh dd

x

*

tip x6c dinh lh R
1p.D0thicdchhmsdy= log"x v)y- lsg x (0< a+I) thiddixfrngv6inhauquatrucholnh
C. Hhm s6 y

=

/

1og"

CAuS: Cho a > 1. Tim m€nh

(0 < a

r1d

1) co

sai trong c6c inOnh'd.i sau,

A. log"x >Okhix>1
B.

1og^x<0khi0
C. Neu xr

(

X.

thi

1og,

x, < 1og, x-

(ry Dd thi hhm sd y = 1og. x c6 tiom cAn ngang l). truc hoinh
.CAu6: Cho 0 < a < lTirn mgnh dti sai trong cdc rn0nh dd sau:

A.iog,x>0khi0B. log"x<0khrx>1
/ --\

(
Q,)Neu xr X, thi log. x, < Log, x,
D. Dd thi hhm sd y = 1og, x c6 tiOm cAn

drlrng

li truc tung

CAuT: Cho a > 0, a + 1. Tim rndnh dO dfing trong cdc m0nh dd sau:
A. Tap girl tri cia hdrn sd y = a- 1)r tap R
gi;i tri cria hhm sd y = logo x l) tap R
/B)'Iap
.L U
\-/

C. T'?p xdc dinh cila him so y = a- li kho6,ng (0; +,:o)
D.T+p xdc dinh cria hlm sd y = 1og, x le mp R

CAuS: Hhrn sd Y = ltr (-^'

A. (0;

- Sx - O) c6 tAp xdc dinhlh:

+co)

Cflu9: Hlm s6 y

=

-2)

ln

B. (-"o;

(rtr;
\/

,B. (1:

^)

/^\

(C. {2; 3)
.O tdp xic dinh li:

0)

+m)

Ot-*r
Ciu10: Hhm -so y = ln !t - sl,, xl c6 tap xdc dinh th: A. (-co;

-2)

D.

v (2; +co)

(-*; 2) u

(3; +co)

D. (-2;2)


xt{;. kzn,kez\

$
Ciull:

sd, =

Hhm

C*u12: Hlm
A.

sd

B. (0;

+oo)

CAu13: Hhm sd y

(d

=

log,G

+o)

A. (6;
CAul4: Him s0 nlo du6i

ro,

li:

+i

c. (o;

D.R

+co)

.O tap x6c dinh 1):

fr

+co)

B. (0;
@(-*; ei
dAy ddng bidn tr6n tdp xdc dinh ctra n6?
/,r \x

s.v=l1l
' lal

A.y = (o,s)^

D. (0; e)

C. R

y = 1og, (O^:,*') c6 tap x6c dinh

t2;6)

@r= (Jt)'

\-,/

D.R

D-y=

A.y=logrx

B.y=logrrx

r:^ ('t\&
Cflul7:

@

C. n"

nlo durii dAy ttri nho ho'n 1?
rog, (o,z)
B. log, 5
sd

V' =

y=

(*' -2x+2)e'

x2e'

B.

y' -

cd dao

-2xe"

C.

Ciu20: Cho f(x) =

9--{.

Dao

2

44

B.3
(riJ:

-e
H}n so f(x) = 1u

@'

CAu23: Cho f(x) = ln

1

x

(*'

c1+
x*

@r:

(92

I

f'(l)

+ 1) , Dao hirrrr

(ry:

1

il4u26: Cho y

ln

--L

. Fle thri'c

bzing:

r J +l

c

t'o'i

c3
ci'iir

D.4
biing:

l

C*u25: Cho f1x; = Inltanxl Daohlur,

A.

D. Ket qui khfc

c.3

C*u24: Cho f(x) = ln lsin lxl . Dao he*
r,

A.

D.

c6 dao h}m th:

tn*

B.

A

c."

e

]l1
xx

_l+
x'

-'2)e*

1},r f'(0) beng:

c2

r:?

^1
A.-

y' = (Zx

D.6e

Cdu21: Cho f(x) = in?x. Dao hlm f'(e) bang:

A.

D. 1og.9

e

:

'@"

41
\./

en

him ti:

:.". D+o lilm f'(1) bang
Cfin19: Cho f(x1 = !rXA. e2
C.4e

{JAu22:

,D.y=lognx

D.

C. logn

".]

3

Ciu18: Him

@

u (Ju )'

t;l

Sd

OV=log"x

/ \x
IC\
t_l

[

CAu15:H}rms6n}odu6idaythinghichbidntr6ntAp-x5cdinhciian6?

t9

)

k€zl

li:

c6 tap rdc dinh

al;
[d fo; +m\ {e i

(*
c. R\tt*u",

R\ {x+kln,ke Z}

B.

D.4

[;)

biing:

D.4
vh

kh6ns

D. Ket qui kh6c

D.R


(!V +e)=0

A.Y'-2Y

Cilttl7: Cho f(x) = e'''l-. Dao-hhrn f'(0) bane:

(s)z

A1

Ciu28: pho ftx; =

c"i

c.2

,1"t

C*u29: Cho f(x) =

A.2

@

C.2ln2

rnZ

c.2

B.l

-1

Ciru3l: H)nr

so

D

3

2;r. Dao hlm f'(0) bang:

cau30: cho f(x) = ranx vd rp(x) = ln(x - i ). Tinh
A.

D4

Dao hlm f'(0) bing:

scosrr .

@o

D.y'-4eY=0

CYY'-2=(]

r'( o)

. Drip so cfra bhi to6n llt:
--:l;
a'(0)

D- -2

*'uir -- 1j c,rr.]ao hlm f't0) l):

ltx) =-ln(^

A.o

D- Ket qui khdc

c.2

Gr

D.3

Cfiu32:pho f(x) = 2'.3". Dao him f'(0) bang:

(!,1n6

B.

1n2

C. ln3

D.1n5

-n(q +,hr)

CAu33: Cho f(x) = x'.n* . Dao hhm f'(1) bang:
C.
B. r(l + lnn)
A. n(1 + 1n2)
r + sin x
cau34: Hhm st5 y = ln lcos
| .o ouo hirm bang:

nlnn

D. xzlnn

icosx-smxl

(A.i
\_./

B.- 2 -

2

cos ^
Lx

CAu35: Cho f(x) = 1og.

(x'+ 1). Dao hhm f'(i)

-1

(a.t

\n2
CAu36: Cho f(x) = igt

bang:

c.2

B. 1+1n2

V

^
-+,

.

D.4Ln2

{}ac hlm f'(10) l;iinl:

(8,' '*

A. In10

D. sin2x

C" cos2x

sin 2x

I

-5

ln 10

c. lu

D. 2 + 1nl0

Ciu37: Cho f(x) = c' .-D4o ham cap hai f'(0) biurg:
D.4
A. 1
Ciu38: Cho f(x) = xt ln x . Dao h}m cap hai f^le) b21g:
c.
A.2
(D.5
tri
tai
didrn:
dat
cuc
xe-*
so
f(x)
CAu39: Hhm
=

A.x=e

@:

c.3

8.3

4

tl.x=e'

Ciu40: II)m sd f(x) = x' ln x dat cuc tri tai ditim:

A.x=e

B.r=

nG

D.x=2

0,=,
_i
C.x=U

= e" (a;e 0) c6 dao hirm cdp n lir:
C. ,(')
B. y(") =a"e'*
A. y(n) -"u*

:,!e"

y = lnx c6 dao hl'rn c{p n l}r:
n!
^ y'(n)
'
B. y(') =\-rl
I}.y
A.
a.Y'=x
=

c. v'"' -;;
\'.y
=

CAu41: H)m sd y

D. y(') =n.e"*

CA,u42: Hdm s6

=;

(-l)n.'g+
_l

lf

D' v(') =
v'r

#

CAu43: Cho f(x) = xte ^. bat phuctng tlinh f'(x) 2 0 c6 tAp nghi0m th:
(B; t0; 2l
D. Ket qui kh6c
C. ( 2; 4
A. (2; +co)
thfrc rtit gon cua [,= ]'cos,\ - yinx - y" la:
C6u4zt: Cho ftirm s6 y =
"'"'')Bie,,
B.2e'i"^
A. cosx.e'i"*
g'o . ,." . o^,t CAu45;D6 thi (I-) cfia hhrn so f(x) = lnx cit truc hoiir--ih tai didm A, tidp tuydn cira (L) tai A cd phuong trinh l}:

[Ay=x-t
\--)'

B.Y=Zx+l

C.Y=3*

D'Y=4x-3


rnixu

pHtJoNG

ilf,ul: Phumg trinh

=L6

43*-2

ivru vA pHUoNG rniruH

cd nghiOm th:

@*=1

3

A.x=*
4

Cf,u2: TAp nghiOrn cria phuorrg trinh: 2*'-'-o =

A.

o

B.

r,Ocanfr

l2:4]

@

{o;

c3

I

I6

D.5

le,

r}

n. {-z;z}

Cflu3: Phuong trinh 42**3 - 8o-* c6 nghiem l):

/^'\6
(A.):
'---'z J

B.

I

:3

4

I5

c.

D.2

( ^t.;\-"
CAu4: Phuong trinh 0, 125.42'-i = I
.6 nghidm lh:

+ I
(.8]

"

^
(d.e
A.3
8.4
c.s
Cflu5:!\gong trinh: 2' +2*t +2*-7 -3r -3x-r *3V e6nghi€m Id:
(4i2
B. 3
c.4
D. s
CAu6:

tr)nh: 2r*-6 +2^-= = L7 c6 nghiem l):

!\.u*g

8.2
@)-3
C&u7: TAp nghi€m cria phuong
a. {z;

+}

c.3

trinh:J'-1

+ 53-'* =

s} @p,:y

n. {:;
r'\-/

Cflu8: Phuong trinh: 3{+ 4* = 5^ c6 nghi0m

A.

1

D.s

@.2

3

c.

26 li:
D. @

li:
D.4

Cfiu9: Phucmg trinh: 9' + 6* = 2.4* c6 ngtri€m Ih:

A.3

8.2
c.i
(D)o
\-/
Cflu10: Phuong trinh: ? = -x + 6 c6 nghi€m ld:
A. 1
(9.2
c.3
D.4
CAull: X6c dinh m dd phuong trinh: 4* -2m.2*

A.m<2

CAutr?: Phuong

A.7

B.-2trinh: logx + log(x- q); I

8"8

C&u13: Ph*ong trinh: lg(5 4

A.

C&ulS: Fhir
A.o

co nghiem th:

ro

D.4

i:x - Z) = 0 c6 rldv nghiclm?
D3
@)
tlinh: [n(r * 1)+ln(x +]) -- hr(x +7)
cz
Gl. I
D3

r

A.24
Phrrcrng

@,1

@:

c.z

Cfru16: Phuong rrinli: log, x + log, x +- log. x =

Cfrul7:

D.me
I

-"xt) = 31S* c6 nghiem li:

C&uL4: Phucrng tr'inh: ln x + ln

A.o

A cd hai nghi€rn phAn biet? Ddp 6n tI:

C.m>2

C.9

8.2

1

+ rn + 2 =

ts.

36

c.

trinh: krg, x + 3log,

s}

45

2=

1l

c6 nghi0m

@ uo

4 c6 rAp nflhi0m

ii'r:

li:

r. {+; :}
c. {+; io} D. q)
CAu18: Phuong trinh: 19 (x' - 6x+ t) = fg (x - :) c6 tAp nghi0m th:
n {:; +} c. {+; s}
D.O
@tir)
la
C&u19: Phuong trinh: . i
+ -- =-- = 1 c6 t6p nghi6m li:
(ry. {z;

4-lgx

2+lgx

(D


@ 1ro, rool

n. {t;:o}

{to;

{tc;

.

Do

{*','}
Cf,u20: Phrrcrng trinh: x-2*rog' = 10[]0 c6 tip nghi€rr l]r:
r lr
I
zo}
r.
too}
/ C. 1-: 1000 !
a.
w ltO

D.@

)

C&u21: Phuong trinh: iog" x + iog* x = -? c6 tAp nghiOm lh:

c. {z; s}

@tot

B {3}

A{3}

(yVl

C6;u22:. Fhuong trinh: 1--og, x =

D.

rt;

-x + 6 cti tAp nghidrn ih:

c{z:s}

DCI

^
. - HEPT{LIoNG rRiNH ntfi vi leicenir
l). )'--6
*I
Caul: I:10 phuong tiinh: l;-:: o:' vdi x > y c6 mdy ngiri6m:' x' - sK
\L
-L)
/'

8"2

c.r
cau2:

CAu3:

Fle phuong

tri'h:

a)

A

(3;

I-16

phuohg tr)ntr:

i)

B

eAus:[i0phuorrgrr;*,
(a;

a. (roo;

*
[4'*" 16
17^+y =4

-3)

tri"h,

-

:)

a

(::

a.

(4; +), (r;

(zo; t+)

(+: +)

D3

z) o (s; -:)

g,i(r;

uoi xzycongiriem
]:*t:7
+lgy:1.

t)

_ Q(s;

llsxv=5

_'.rr, = 6'tai
n. (soo;

iil

z)

a

@. t+,

z)

c

s)

B. (2,

ia']

D. Kdt qua kh6c

)'y cd nghiern

+)

=-20

C0u9: He phuong tri,,t,'

o

nghiOm th:

.' yt

rrinh:

,)

92

".,,,1
- =O.j
1.,:+
I ^,
(+:

D.0

c6 may nghi0m?

]

n. (o;

ro)

He phuong

a.

@)(r'
v
l'x+2v=-l

[trgx

:)

CAirS: FIo phuong

ciu7:

3)

L'

G

c6 nghiem th:

1*. _ u.r, +z = a

BI

CAu4: H0 phuong trinh:

a.

i3t''-2'=5

B. (rr

Ao
e. (z;

c.3

=

@

lb?

irooo,

,oo1

,

'D Kdrquikhdc

^ v6i x z y c6 nghiem lh:
llogrx+log,y=3

{:t

{*

-'

(:v?: .,i: )

+),(zz:o+) c. (+' 16). (s: i6)

U

,

D. Kel quri kiidc

i.ln x + 1n y = 31,,6

,,,fu,J(o'

t),(z;z)

t6 *ghi€m ld:

n. (tz; o)
-= 5^

c' (s; z)

.6 nghiorn l)
caur0: rre phucrns rri,.,n, {31t
11"
[4lgx+3lgv=18

(b)
I.'

t'

qrr;

iz;


*--{

a.

(roo; tooo)

c.

roo)

@ioco;

D. Kdt qui khdc

(so; +o)

s{r pHU4Nf rRiN.H MU vA l0cnnir
CAul: Tap nghiom cua bdt phuong rrtnn' [-f ]^-'

\2)

a.

r)

(o;

" [,'il
\,4)

(z;s) r. [-z;r]

cau3: Bat phucrng

^

*,"n'

\2)

. LJr)'
@)

c6 tflp nghiern 1):

[-r':]

,

D. Kdt qui kh6c

c6 tap nghiem

[])" [;)*
B. [*.o;2] c. (o; 1)

/\
Q!. [t; z]

D.

CAuS: Bdt phuong

+)

trin!: 9- -3^ -6

a. (r;**)

Ciu6:

fft

(.d

<

1):

@

(-*, r;

B.

(1;+"o) c. (o;r) n. (-i;r)

phuong trinh: 2- > 3'c6 tip nghi0m

(-*;o)

@

@ (-*'log,3)

0 c6 tflp nghi0m

c (-t;i)

l]:

li:

Cflu4: BAt phuong trinh: 4^ <2'-' -r3 c6 tAp nghiOm
a. (t;
n. (z;
c. (tog, 3; 5)

:)

,u'

c (2;+.o) D. (-.o;o)

(D

Ciu2: Bdt phuong trinr,' (JI)*2-2*

a.

. [-f l'

D. Kdt qu6 kh6c

lI:

t
a,rrrn' {],.,.t>27-;, c6 tflp nghiem li:
l3o..r
A. [2: +co)
Zl C. (-co; I ] D. 12; 5l
@f--Z;
C&u8: BAt phuong trinh: log, (:x - Z) r log, (e -:x) c6 tAp nghiem l):

CiuT: Hc

bdr phuong

CAug: Bdt phuong trinh: logo (x +-7) > 1og, (x + 1) cd tip nghiem

a.

(l;4)

(s;+"o)

B.

Cf,ult): Sd gini bat plutong trrnh:
Budcl:DiduL16n,

@t-r;zs

A>o e [.'?
x-l

Budc3:

1v

'^
x-l

In

1)

I

ln il, , O i*). mot hoc sinh lap luAn qua ba brrryc nhu sau:
;t_l
Lx>l

Budc2: Ta c6

D. (-m;

li:

1u

> 0 <+

tZ)e2x>x 1ex
-

ln '^

x-l

>

,r,
lnl

1u
e 'n > | (Z\
x-l

>-1 (3)

Kdt hqp (3) vh (1) ta duoc

[-1-

I.

|

L^rl
i'
V4y tQp nghi0m cira bat pirucrng trinh ii: (- i; 0) ur ( 1 : -.,-:r ) i
Hoi lAp luAn tr0n dring hay sai? Neu sai thi sai tk brrdc nao?l
-ts.
..\. L4p luan hoin toin cLing
Sai tir budc I
C. Sai tt budc .bfton'o* - 4) < log' (x +
Cflull: Hc bat phuong trinh:
c6 tin ,nr,rci,o ta,
,

1)

I ""

@ t+; -:t

B.l2;41

C" (4;

+"o)

D. O

@

s^i tii budc

3



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay

×